两个服从不同分布的相互独立变量的积的期望

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 14:08:17
两个服从不同分布的相互独立变量的积的期望
设两个随机变量X和Y相互独立且分别服从参数为a1,a2的泊松分布,则X+Y服从参数为什么的泊松分布?

X+Y服从参数为(a1+a2)的泊松分布,因为泊松分布具有可加性,证明见参考资料

已知离散型随机变量边缘分布率怎么求联合分布率 且两变量不是相互独立的

这种情况很复杂的.一般只有相互独立时才能求出来.否则,就不止一种结果

设X,Y相互独立,且都服从标准正态分布,则Z=X/根号下Y^2服从( ) 分布,并写出分布的参数

Z的分布叫做瑞利(Rayleigh)分布,具体求法:f(x,y)=[1/(2πσ^2)]*e^-[(x^2+y^2)/2σ^2]当z=0时,有:F(z)=∫∫f(x,y)dxdy,其中积分区域为x^2

两个独立的、服从正态分布的随机变量,它们的差的分布?

方差都是相加的.如果X,Y独立,一定有D(X±Y)=D(X)+D(Y)再问:会不会答案错了??按照相减计算会得出书后的答案再答:那有可能是答案错了,D(X±Y)=D(X)+D(Y)是独立的随机变量的方

设X服从参数为1的泊松分布,Y服从参数为4,0.5的二项分布,且x,y相互独立,求E(XY)

由于相互独立,EXY=EX*EY=1*2=2泊松分布的期望等于纳姆达=1二项分布的期望等于np=4*0.5=2

设X,Y是相互独立且服从同一分布的两个随机变量,X的概率密度为f(x)=e^-x,当x>0时;f(x)=0,当x为其他时

我希望没看错你的题目,是f(x)=e^-x,我想是这个吧.U=X+Y,V=X-Y.一般的方式是这样因为二者相互独立,so ,fX,Y(x,y)=fX(x)×fY(y)=(e^-x)(e^-y

设随即变量X和Y相互独立,且都服从正态分布N(u,m^2),求max(X,Y)的数学期望 我需要答案,

是不是以x,y建立坐标轴,借助图像y>=x确定的呢……表示不知道答案不用谢

设随机变量X与Y相互独立,且服从同一分布,X的分布律为

由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0

设随机变量X与Y相互独立,且都服从参数为3的泊松分布,证明X+Y仍服从泊松分布,参数为6

这个用泊松分布可加性来做,很简单X,Y相互独立且分别服从p(λ1),p(λ2)那么Z=X+Yp(λ1+λ2)参考资料里有他的证明

设随机变量X与Y相互独立,且都服从参数为3的泊松分布,证明X+Y服从泊松分布,参数为6

要用到微积分吗?具体公式给下回答:=Σ(3^I*e^(-3)I/I!)(3^(K-I)*e^(-3)I/(K-I)!)=Σ(3^I*3^(K-I)e^(-3)*e^(-3)/I!*(K-I)!)=Σ[

设x和y是相互独立的两个随机变量,且x服从(-1,2)上的均匀分布,y服从y~N(1,4)则D(XY)=

解题思路了讲到这后面的积分自己先积一积不懂追问再问:谢谢,明白了,但是木有更简单一点的么~~~~~再答:放心~是没有捷径滴而且这样做计算量不算很大,耐心一点就行了

概率论问题,设X.Y相互独立.且都服从参数为1的柏松分布,求X+Y服从哪种分布?

X.Y参数为1的柏松分布,则其母函数为Ψ(s)=e^(s-1)X.Y相互独立,X+Y母函数为Ψ(s,s)=Ψ(s)*Ψ(s)=e^(2(s-1))X+Y服从参数为2的泊松分布.再问:能再详细点吗。再答

两个变量都服从标准正态分布,方差不同,独立吗

两个变量都符合标准正态分布了.怎么个就方差不同呢?标准正态分布N(0,1),期望E=0,方差D=1也就说,两个变量都符合标准正态分布了,就期望和方差都相同了.叫同分布.楼主的问题应该是,两个变量都符合

X与Y是两个相互独立同分布且他们都服从标准正态分布,则X^2/(X^2+Y^2)的期望是多少

因为X^2/(X^2+Y^2)+Y^2/(X^2+Y^2)=1所以E[X^2/(X^2+Y^2)]+E[Y^2/(X^2+Y^2)]=E(1)=1因为X、Y服从相同的分布,且相互独立,所以:E[X^2

设x,y是相互独立同服从几何分布的随机变量,即它们共同的分布率为p(x=k)=pq^(k-1),

解答过程如图,写出Z1,Z2取值与X,Y取值的关系就可计算了.经济数学团队帮你解答,请及时采纳.谢谢!

随机变量X,Y相互独立,分别服从参数为a,b的泊松分布,证明X+Y服从参数为a+b的泊松分布.

π(a)π(b)π(a)π(b)为柏松分布则P{X=k}=(a^k)e^(-a)/k!P{Y=m}=(b^m)e^(-b)/m!k,m=0,1,2.因为X,Y相互独立则他们的联合分布P{X=k,Y=m

如何证明两个服从泊松分布的变量相加之后仍然服从泊松分布?

π(λ)P{X=k}=λ^k*e^(-λ)/k!π(μ)P{Y=k}=μ^k*e^(-μ)/k!Z=X+YP{Z=k}=∑(i=0,...k)P{X=i}*P{Y=k-i}=∑(i=0,...k)[λ