两个收敛级数的平方和

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:51:54
两个收敛级数的平方和
级数的一致收敛和绝对收敛怎么证明

级数的一致收敛用魏尔斯特拉斯判别法证明.级数的绝对收敛即判断级数每项加绝对值号形成的正项级数的敛散性,可根据比较判别法,比值判别法,根值判别法等进行证明.

级数的绝对收敛与条件收敛的一道题

首先考虑a=[In(n^2+1)]/n^tt>0则lima=lim[2n/(n^2+1)*t*n^(t-1)](洛比达法则)=lim[2n^2/t*(n^2+1)]*[1/n^t]=0考虑绝对收敛当p

麻烦给个例子,两个发散的正项级数相加得到的新级数收敛的!

∑[1/n^2+(-1)^n]与∑(-1)^{n-1}都是发散的,但逐项相加得∑1/n^2收敛再问:但这两个级数并不是正项的啊再答:两个发散的正项级数相加肯定还是发散的,这是因为正项级数发散以为这其部

设两个级数都收敛,证明两个级数和的平方也收敛

an,bn收敛知an->0,bn->0an再问:但这不是正项级数再答:和正项级数有什么关系?你哪没看懂再问:an的平方怎么收敛的再答:老师给了个反例反例a_n=b_n=(-1)^n/n^0.1,刚才默

条件收敛级数与绝对收敛级数的一个问题

①前一个级数的绝对值级数【1/(n*n)】是收敛的,故前一个级数绝对收敛②后一个级数本身是收敛的,但是它的绝对值级数【1/n】是发散的,故后一个级数是条件收敛①②都是根据条件收敛、绝对收敛的定义得到的

求教高数中,级数收敛的一道题

再问:我想问问A为什么是不发散?

关于级数收敛的充要条件

CA是必要条件B只能针对正项级数D是充分条件

级数的绝对收敛

答案a>1由于a>0,故1+a^n>0.加绝对值无所谓①01通项极限为0.用根值判别法,对通项1/(1+a^n)开n次方,结果是1/a,满足收敛条件,收敛半径是a.故答案就是a>1这是我自己的方法,这

莱布尼茨准则判断的收敛级数都是条件收敛吗

这个不一定,比如说,(-1)^n/n与(-1)^n/n^2,前一个条件收敛,后一个绝对收敛!但是一般而言,当需要判断交错级数的收敛性时,先看是否绝对收敛,利用正项级数收敛的判断方法;如果不行,再用莱布

如何证明两个收敛级数相乘必然收敛?

若为两个正项级数:设两个收敛级数S1,S2.因为收敛必存在N,使得n>N时,S1n

如何判定级数的收敛

答案是C级数收敛的必要条件是加项是无穷小量.B的加项极限是1,D的加项极限是e,都不是无穷小量,所以B和D是发散的.以(1/n^p)为加项的级数稳定为p-级数,这个级数收敛的充分必要条件是p>1,而A

证明级数收敛(急求)证明如图级数收敛,并求出收敛值~另外最好写一下怎么证明这样两个东西的和或差收敛呀~

因为Un=n/[(n^2+n+1)(n^2-n+1)]是正项级数而且limUn/[1/n^3]=1所以Un与1/n^3有相同的敛散性,所以级数收敛再问:这位同学你梦游天姥山了吧说的都是啥呀再答:收敛值

一道关于级数绝对收敛和条件收敛的题目

第二步用的是比较审敛法,和P-级数的结论再问:比较审敛法是什么再答:正项级数审敛的一种最基本的方法:形象的说:大收则小收,小散则大散

级数收敛

一.易见a_{n+1}/S_n>1/x在区间[S_n,S_{n+1}]上的积分,两边求和,就得到左边的级数大于等于1/x在a_1到正无穷上的积分,当然是发散的.二.用Dirichlet判别法.

一个绝对收敛级数和一个条件收敛级数的和是什么级数

只可能条件收敛an绝对收敛,bn条件收敛an+bn=cn如果cn绝对收敛,那么bn=cn-an绝对收敛,矛盾

两个级数都发散,或都收敛或一个发散一个收敛,他们的和,积,绝对值的和之类的是什么关系,发散还是收敛

两个函数有极限当然他们的和差都有极限 并且就是他们极限的和差两个级数发散的话和、积是发散的绝对值的和也是发散的可以看级数收敛的必要条件.两个级数一个收敛一个发散的话和、积、绝对值的和爷发散&

两个条件收敛的级数相乘所得的级数的收敛性是什么?

如果你是指一般项相乘,则可能收敛,也可能不收敛.无法判定.收敛的例子an=bn=(-1)^n/n不收敛的例子an=bn=(-1)^n/根号n