两个对称矩阵的乘积 当且仅当他们可交换
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:24:31
必要性:若A,B半正定,则存在C使得B=CC^T,那么tr(AB)=tr(ACC^T)=tr(C^TAC)>=0充分性:反证法,若A不是半正定的,则至少有一个负特征值λ再问:您好,我还想弱弱地问一下t
因为A,B同阶,所以它们的标准形为Er(A)000和Er(B)000所以当且仅当秩相等时,它们有相同的标准型.注意,这里不需要A,B等价
R中所有对角元素非零rank(R)=nrank(R^HR)=nrank(A^HA)=nrank(A)=n至于第二个问题,这个没法回答对于列满秩矩阵,在要求R的对角元为正数的前提下QR分解是唯一的,所以
当Ax=λx=>A^(-1)Ax=A^(-1)λx=>Ix=λA^(-1)x=>1/λx=A^(-1)x当A^(-1)x=1/λx证明同上得证
既然讨论A是否可逆,则A一定为方阵由|λE-A|=λ^n-(a11+a22+…+ann)λ^(n-1)+…+(-1)^n|A|=(λ-λ1)……(λ-λn),比较常数项可得:|A|=所有特征值的乘积所
利用结论,rank(T)=P,当且仅当存在可逆矩阵M,N使得T=M*diag(Ip,0)*N必要性:如果rank(A)=p,由结论存在可逆矩阵P,Q,使得A=P*diag(Ip,0)*Q把P分成两列P
在下不自量力来做一下?离散数学都忘得差不多了例题:R是集合X上的一个自反关系,求证:R是对称和传递的,当且仅当和在R中有在R中.证明:1)充分性:假设R是对称和传递的.R是对称的,且∈R=>∈RR是传
去掉实对称也是成立的.任一矩阵都有实相合标准型,即对角线上只是1或-1或0.只要实相合标准型相同,两个矩阵必相合,反之,若不同必不想和.所以本题就是问n阶矩阵有多少相合类.这个你自己算下,在n个空位不
必要性可以用反证法,如果A有负特征值c,那么取t=|c|/2即得矛盾.
必要性:A正定→A与E合同→存在可逆矩阵D,使得A=D'D.那么B=C'AC=C'(D'D)C=(DC)'(DC),所以B与E合同→B正定;充分性:B=C'AC正定→B与E合同→存在可逆矩阵M,使得B
再问:那俩箭头啥意思再答:这都不知道,充分性、必要性这里只是提供思路,书写是不规范的,将就着看吧再问:哦,谢谢再答:不客气
按照秩和正惯性指数分类就行了:秩为0:1秩为1:正惯性指数分别为10秩为2:正惯性指数分贝为210秩为3:正惯性指数分别为3210.秩为n:正惯性指数分别为nn-1.10因此分类为1+2+3+.+n+
提示:一般,矩阵B为正定[正半定]当且仅当B的特征根均大于0[大于等于0].若记A的特征根为a_1,……,a_n则tE+A的特征根是t+a_1,.,t+a_n(Frobenius定理).
是的,因为这两个数互为质数.例如:4和5,4x5=20,4和5最大公因数是1.
若A正定,则存在正交矩阵T,A=T^(-1)PT.其中P=diag(a1,…an)为A的标准型,ai>0.记Q=diag(√a1,…√an),取B=T^(-1)QT即可!若A=B^2,B实对称,类似上
知识点:|AB|=|A||B|A可逆|A|≠0证:A,B都可逆|A|≠0,|B|≠0|A||B|≠0|AB|≠0AB可逆
柯西不等式就是对应的项不为是只有对应的项乘比例就能取等号所以,当且仅当(a+b)/[1/(a+b)]=(b+c)/[1/(b+c)]=(c+a)/[1/(c+a)]即(a+b)^2=(b+c)^2=(
当且仅当是充分必要的意思,即两个结论可互推既在证明:A与B可交换时,AB是对称的又要证明:AB是对称时,A与B可交换
必要性显然至于充分性,把λE-A化到Smith型diag{d_1(λ),...,d_n(λ)},d_i|d_{i+1}n-1阶行列式因子是d_1(λ)...d_{n-1}(λ),它的次数是n-1说明d
证明等价关系容易:1(a,b)R(a,b),因为a+b=a+b;2、(a,b)R(c,d),则a+d=b+c,于是(c,d)R(a,b);3、(a,b)R(c,d),(c,d)R(e,f),则a+d=