两个同心薄金属球壳,半径分别为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:34:20
两部分金属分别是等势体在r1r2间用高斯定理取半径为R(r1
解析:由题意可得:大圆的面积为πR²,而小圆的面积为πr²,则环形面积为πR²-πr²又环形面积是小圆面积的2倍,故有:πR²-πr²=2π
A板:离B近的面上带+0.5x的电荷,离B远的面带+0.5x的电荷B板:离A近的面上带-0.5x的电荷,离A远的面带+0.5x的电荷
(1)由介质中的高斯定理可得电位移D的分布D=0(
静电感应.球壳内外分别均匀带电-Q,+Q.利用均匀带电球面内部是等电势与叠加原理从而电势:r>r2V=kQ/rr1
任何情况下,静电平衡后的导体内部电场均为0.否则电场的作用会使导体内部的自由电子移动,最终平衡后,金属内部电场必为0.这题也是一样,金属内部电场为0
用高斯定理求E,对称性选取高斯面为过P点同心的球面,此面上的E大小均相等.4πr²E=Q/εoE=Q/4πεor²利用电场力做功求电势,由P点向外球壳移动电荷q,电场力做功为qU,
如果你从最后一种情况往回看会好理解点, 某一带电球壳在其内部不产生电场力,所以它不会对它内部的电势有影响,这是关键,算外部电势时可以把它看成点电荷来算,积分那步只是一个思考方式,
设内球带的电荷量为q,则有如下方程:k(q+Q)/R3+kq/R1-kq/R2=U.根据此方程可求得q.由此利用高斯定理即可求得电场强度;电势同样可以利用电势的公式求得.
运用电势叠加原理,先算q1与q2,由于静电感应,两者在金属球内表面感应出等量的异种电荷,外表面感应出的q1与q2,计算时考虑到由于静电屏蔽,金属球内部的电荷发出的电场线终止于内表面,要计算金属球的电势
由题意我们可以同时设无穷远点和A球表面为零电势点由于导体球B内无电场,所以R2处与R3处电势相等.我们从无穷远处到A球表面,电势之和为零然后就可以求得了.
本题中的电荷分布具有球对称性,因而计算电场时可以用电场的高斯定理,电场对半径分别为3cm,6cm,8cm处的闭合球面积分得到E1*(4πr1^2)=0;E2*(4πr2^2)=q1/ε;E3*(4πr
题目写了L>>r,这个条件要理解好.就是相对于L,r的数值可以忽略不计了,例如..L=1X10^6r=1这个L+2r和L有多大差距呢...选A,1楼解释的对再问:若不能看成质点的话,还能使用此公式吗,
内球接地后,假设内球上带电q,那么球壳内表面带电-q,外表面带电(q+Q).因为接地嘛,内球电势为零,无穷远处也是零,所以从R1到无穷远的电势差为零.然后就是分开算场强(用高斯定理),再积分算R1到无
V1=kQ1/R1+kQ2/R2V2=kQ1/R2+kQ2/R2解上述方程组可得:Q1和Q2再问:首先你是是错的,答案我有就是我不知道怎么来的再答:答案拿出来看看很多所谓答案都错了,但愿这次是我的错了
简单,首先你得弄清楚什么是电势.把单位正电荷从无穷远处移到某处所需的功.如果做正功,则电势为正,做负功则电势为负.在本题中,导线将球壳连接之后,球壳外部场强不变,内部即两球壳之间场强为零,两球壳成为等
此题的解题思路是:先用高斯定理求出各区域的电场,再由电势的定义求解.需要注意的是:由于电荷感应,球壳的内表面的电荷为-q,外表面电荷为R+q
利用均匀带电球面内部的电势为常数,以及电势连续性、叠加原理,可知,U(P)=Q1/(4πε0·R1)+Q2/(4πε0·R2)