两个同心球面的半径分别为R1和R2,各自带有电荷Q1和Q2,求各区域的电势分布
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:40:01
/>根据问题的球对称性,电场沿径向,在距球心r半径处取一球面,利用高斯定理,此球面上的电场积分和其所包围的内球壳所带的电荷Q有关系:∮E•dS=4πr²E=Q/εo故E=Q/(4
E=kQ/r^2U=E/qUab=φa-φb450v=Q/r^2450=Q/r^2Q=2.205
高斯定理知道吧,你在那两个带电球面之间任意取一个同心高斯球面,它包围的电荷只有q,这样由高斯定理即可知,那两个带电球面之间的电场只由q决定,而与Q无关,所以,两球面的电势差与Q无关.也可由积分运算证明
两球面间的电势差为:k(q2/R-q1/r)在大学物理中k用1/(4πε0)表示.
如果你从最后一种情况往回看会好理解点, 某一带电球壳在其内部不产生电场力,所以它不会对它内部的电势有影响,这是关键,算外部电势时可以把它看成点电荷来算,积分那步只是一个思考方式,
设内球带的电荷量为q,则有如下方程:k(q+Q)/R3+kq/R1-kq/R2=U.根据此方程可求得q.由此利用高斯定理即可求得电场强度;电势同样可以利用电势的公式求得.
这个好像是我们学校练习册上的题目吧,都会有答案的,找下学长,或者去下打印店那边吧,有答案的额
用高斯定理做圆柱形高斯面,∮E.dS=E*2πrL=q/ε01,(
简单啊,场强叠加5cm:0+0=020cm:0+1.0*10负8次方/(4*Pi*epsilon*0.2*0.2)50cm:1.0*10负8次方/(4*Pi*epsilon*0.5*0.5)+1.5*
本题中的电荷分布具有球对称性,因而计算电场时可以用电场的高斯定理,电场对半径分别为3cm,6cm,8cm处的闭合球面积分得到E1*(4πr1^2)=0;E2*(4πr2^2)=q1/ε;E3*(4πr
这个简单(Q1+Q2)/(4*PI*episilon*R2)再问:你确定不?我也是这么想的、但是有学习好的同学跟我的不一样、她们的好复杂的再答:绝对确定,如果他们复杂,可能是通过电场去积分的,不需要
带电同心球壳?再问:是的,带电的同心球壳再答:小于r1为0,大于r1小于r2为q1/ε,大于r2为(q1+q2)ε
V1=kQ1/R1+kQ2/R2V2=kQ1/R2+kQ2/R2解上述方程组可得:Q1和Q2再问:首先你是是错的,答案我有就是我不知道怎么来的再答:答案拿出来看看很多所谓答案都错了,但愿这次是我的错了
简单,首先你得弄清楚什么是电势.把单位正电荷从无穷远处移到某处所需的功.如果做正功,则电势为正,做负功则电势为负.在本题中,导线将球壳连接之后,球壳外部场强不变,内部即两球壳之间场强为零,两球壳成为等
此题的解题思路是:先用高斯定理求出各区域的电场,再由电势的定义求解.需要注意的是:由于电荷感应,球壳的内表面的电荷为-q,外表面电荷为R+q
利用均匀带电球面内部的电势为常数,以及电势连续性、叠加原理,可知,U(P)=Q1/(4πε0·R1)+Q2/(4πε0·R2)
这个题目根据高斯定理做.高斯定理:通过一个任意闭合曲面S的电通量Φ等于该面所包围的所有电荷电量的代数和∑q除以介电常数ε0.与闭合面外的电荷无关.公式表达为Φ=∮EcosθdS=(1/ε0)∑q其中E