两个同心球面的半径分别为R1和R2,各自带有电荷Q1和Q2,求各区域的电势分布

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:40:01
两个同心球面的半径分别为R1和R2,各自带有电荷Q1和Q2,求各区域的电势分布
大学物理电学题,急两个带等量异号电荷的均匀带电同心球面,半径分别为3cm和10cm,两者电势差450V,求内球面带的电荷

/>根据问题的球对称性,电场沿径向,在距球心r半径处取一球面,利用高斯定理,此球面上的电场积分和其所包围的内球壳所带的电荷Q有关系:∮E•dS=4πr²E=Q/εo故E=Q/(4

半径为r的均匀带电球面1,带电量为q,其外有一同心的半径为R的均匀带电球面2,带电量为Q,两球面的电势差

高斯定理知道吧,你在那两个带电球面之间任意取一个同心高斯球面,它包围的电荷只有q,这样由高斯定理即可知,那两个带电球面之间的电场只由q决定,而与Q无关,所以,两球面的电势差与Q无关.也可由积分运算证明

(求解一道物理题)两个同心球面的半径分别为R1和R2,各自带有电荷Q1和Q2.求:各区域的电势分布

如果你从最后一种情况往回看会好理解点,  某一带电球壳在其内部不产生电场力,所以它不会对它内部的电势有影响,这是关键,算外部电势时可以把它看成点电荷来算,积分那步只是一个思考方式,

大学物理题,大侠指教一导体球的半径是R1,其外同心地罩一环内,外半径分别为R2和R3的厚导体球壳,此系统带电后内球电势为

设内球带的电荷量为q,则有如下方程:k(q+Q)/R3+kq/R1-kq/R2=U.根据此方程可求得q.由此利用高斯定理即可求得电场强度;电势同样可以利用电势的公式求得.

电荷以相同的面密度分布在半径为R1=10cm和R2=20cm的两个同心球面上,设无限远处电荷为零,球心处的电势为U=30

这个好像是我们学校练习册上的题目吧,都会有答案的,找下学长,或者去下打印店那边吧,有答案的额

两个带有等量异号的无限长同轴圆柱体面,半径分别为R1和R2(R1

用高斯定理做圆柱形高斯面,∮E.dS=E*2πrL=q/ε01,(

两个同心球面,半径分别为10CM和30CM,小球面均匀带有正电荷1.0*10负8次方,大球面均匀带正电1.5*10负八次

简单啊,场强叠加5cm:0+0=020cm:0+1.0*10负8次方/(4*Pi*epsilon*0.2*0.2)50cm:1.0*10负8次方/(4*Pi*epsilon*0.5*0.5)+1.5*

大学物理.两个均匀带电的同心球面,半径分别为r1=5cm和r2=7cm,带电量分别为q1=0.6*10-8C,q2=

本题中的电荷分布具有球对称性,因而计算电场时可以用电场的高斯定理,电场对半径分别为3cm,6cm,8cm处的闭合球面积分得到E1*(4πr1^2)=0;E2*(4πr2^2)=q1/ε;E3*(4πr

已知一均匀带点同心球面、内半径为R1、带电量为Q1、外半径为R2、带电量为Q2、求r=R2时的电势

这个简单(Q1+Q2)/(4*PI*episilon*R2)再问:你确定不?我也是这么想的、但是有学习好的同学跟我的不一样、她们的好复杂的再答:绝对确定,如果他们复杂,可能是通过电场去积分的,不需要

一带电系统由两个同心均匀带点球组成,内球面的半径为R1,带电量为Q1,外球面的半径为R2带电Q2

带电同心球壳?再问:是的,带电的同心球壳再答:小于r1为0,大于r1小于r2为q1/ε,大于r2为(q1+q2)ε

大学物理中册—电学—静电场-电势问题:两个同心均匀带电球面,内外半径电势分别为R1,R2,V1,V2

V1=kQ1/R1+kQ2/R2V2=kQ1/R2+kQ2/R2解上述方程组可得:Q1和Q2再问:首先你是是错的,答案我有就是我不知道怎么来的再答:答案拿出来看看很多所谓答案都错了,但愿这次是我的错了

电势12.两个薄金属同心球壳,半径各为 R1 和 R2( R2 > R1),分别带有电荷 q1 的 q2,两者电势分别为

简单,首先你得弄清楚什么是电势.把单位正电荷从无穷远处移到某处所需的功.如果做正功,则电势为正,做负功则电势为负.在本题中,导线将球壳连接之后,球壳外部场强不变,内部即两球壳之间场强为零,两球壳成为等

有一外半径R1和内半径R2的金属球壳,在球壳内放一半径 r 的同心金属球,若使球壳和金属球分别带有Q 和 q 的电荷,求

此题的解题思路是:先用高斯定理求出各区域的电场,再由电势的定义求解.需要注意的是:由于电荷感应,球壳的内表面的电荷为-q,外表面电荷为R+q

两个同心的均匀带电球内,球面半径为 R1 、带电荷 Q1

利用均匀带电球面内部的电势为常数,以及电势连续性、叠加原理,可知,U(P)=Q1/(4πε0·R1)+Q2/(4πε0·R2)

两个半径分别为R1和R2(R1

这个题目根据高斯定理做.高斯定理:通过一个任意闭合曲面S的电通量Φ等于该面所包围的所有电荷电量的代数和∑q除以介电常数ε0.与闭合面外的电荷无关.公式表达为Φ=∮EcosθdS=(1/ε0)∑q其中E