两个发散级数相加
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 09:08:53
再问:再答:积分不会?再问:这样做对不对啊再答:再问:再问:哥们儿,在不在啊,这个感应电动势方向是怎么判定啊再答:哈哈3年没看了你让我怎么答再问:那为啥你高数都会嘞再答:我学数学的啊再问:果然叼,给跪
1/2^n公比为1/2的几何级数收敛1/n调和级数发散收敛级数与发散级数的和发散.1/2^n与1/n的前n项部分和分别为sntn,则sn收敛,tn发散设wn=sn+tn,如果wn收敛,则tn=wn-s
∑[1/n^2+(-1)^n]与∑(-1)^{n-1}都是发散的,但逐项相加得∑1/n^2收敛再问:但这两个级数并不是正项的啊再答:两个发散的正项级数相加肯定还是发散的,这是因为正项级数发散以为这其部
公比小于1收敛,大于1发散
单调递减趋于0,变成积分,1-cos变成2sin^2,1/2x变成t,总之就是sin/t的平方,从0到1/2,而从0到无穷是pi/2(书上都有),所以是收敛的
反证法假设(一个发散级数∑An加上一个收敛级数∑Bn)结果∑(An+Bn)发散不正确即∑(An+Bn)收敛那么由∑(An+Bn)收敛,∑Bn收敛,可知∑[(An+Bn)-Bn]收敛,即∑An收敛,与已
如:an=n²,发散的,an+bn=1/n,是收敛的,此时bn=-n²+(1/n)还是发散的.
发散hi里说吧~这个不难证
发散.级数其实就是-1/(4n+1),与-1/n的敛散性相同,所以发散再问:用比较审敛法的极限形式,除以-1/n,等于1/4,又因为-1/n发散,所以原级数发散,对吧?再答:没错
发散的,可用比较判别法.你写得不准确,n不能从0开始.
假设它们的和为收敛级数,有两个收敛级数的和(差)为收敛级数可知,加上的那个级数是收敛的,故矛盾!
不能,那只是充分条件,非必要条件再问:那帮我解决一个级数收敛的问题:∑(n=1到无穷)(-a)^n/(a^n+b^n)(a>b>0)告诉我大概的方法即可。再答:分子分母除以a^n,得到(-1)^n/(
知limn/(lnn)^9->∞那么存在N足够大,使得当n>N时,1/n*1/lnn(1->N)∑1/(lnn)^10+(N+1->∞)∑1/n*1/lnn而∑1/n*1/lnn由比较积分得知O(∑1
1+1/2+1/3+…1/n+…是调和级数,老师讲的,这种级数就是发散的1+1/8+1/27+…1/(n^3)+…=1+1/2^3+1/3^3+...+1/n^3+...这种是p级数p就是那个指数如果
是条件收敛的,通项加绝对值在第三项后就>1/n
用反证法证明假设∑[a(n)+b(n)]收敛lim∑b(n)=lim(∑a(n)+∑b(n))-lim(∑a(n))显然lim∑b(n)存在,这样就得到矛盾.
两个函数有极限当然他们的和差都有极限 并且就是他们极限的和差两个级数发散的话和、积是发散的绝对值的和也是发散的可以看级数收敛的必要条件.两个级数一个收敛一个发散的话和、积、绝对值的和爷发散&
这个级数是收敛的,而且由于是正数,还是绝对收敛的,因为ln(n+1)比n小很多,就是说它的增长速度非常小,(lnn)/n趋于0当n趋于无穷时,可以把原式除以1/n^2,这个是收敛的,而且比值是0,所以
不一定发散再问:能具体解释下吗?不明白啊……求教再答:比如an=sin(nπ)bn=cos(nπ)然后不就有结论了吗?再问:sin(nπ)不是都等于0吗?那样an不就收敛了……sin(nπ)平方加上c