(a b)逆矩阵 等于
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:18:05
利用Aadj(A)=det(A)I这个关系去推导你想要的结论就行了,你问的这些都能推导出来(可以先假定A可逆)
有很多方法说明这个问题,这里告诉你其中一个先知道三个事实第一初等变换不改变矩阵的秩第二初等行(列)变换,相当于左(右)乘一个可逆阵.第三一个秩为r,可以只通过行(列)变换变成主对角线上只有r个1,其它
不一定.A,B不是方阵时可以不相等.再问:如果是方阵是相等?再答:A,B是方阵时|AB|=|A||B|=|B||A|=|BA|
若A可逆正确:A^(-1)*A*=(AA^(-1))*=E*=E故A*^(-1)=A^(-1)*
哎--换一下想法不就可以了吗因为|B|B^-1=B*所以当B=A^-1得时候就有|A^-1|(A^-1)^-1=(A^-1)*=|A^-1|A=(A^-1)*不明白的话继续问我就可以了
相等.由AA*=|A|E知(A*)^-1=(1/|A|)A.由A^-1(A^-1)*=|A^-1|E知(A^-1)*=|A^-1|A=(1/|A|)A所以(A*)^-1=(A^-1)*
AB的秩永远小于等于A的秩和B的秩两者的最小值
矩阵A的转置矩阵A^T等于A的逆矩阵A^-1那么AA^T=AA^-1=E设A=(α1,α2,α3,...,αn)^T,其中αi为n维列向量,那么A^T=(α1,α2,α3,...,αn),α1^Tα1
等于,因为他的逆也是对称矩阵注意到转置和逆是可交换的,也就是(A^-1)^T=(A^T)^(-1)因为A是对称的,故(A^-1)^T=A^(-1)得证.
A*(E(单位矩阵)+B)=EA*A逆=E所以A逆=E+B这样的题不用写具体数的,只要化成A*A逆的形式就行~
令AB=CA^(-1)=B*C^(-1)C^(-1)=(1,-1,0;0,1,0;0,0,1)接下来自己算一下吧^_^
detA·detB=det(AB)=det(E)=1所以det(A)≠0所以A可逆A·B=E设B'·A=E则B'=B'·E=B'·(A·B)=(B'·A)·B=E·B=B所以AB=BA=E所以A的逆矩
是的,因为AE=AEA=A所以AE=EA可以的话,望选为满意答案.
A可逆的充要条件是A可以写成初等阵的乘积所以AB就是B左乘一些初等阵,而左乘初等阵就是对B进行初等行变换,所以秩不变.即r(AB)=r(B)B可逆的充要条件是B可以写成初等阵的乘积所以AB就是A右乘一
第一行乘以矩阵A加到第二行,行列式变成了一个上三角形形|-BI||0-2B逆|,所以原式=|-B|×|-2B逆|=(-1)^n×|B|×(-2)^n×|B逆|=2^n.请采纳.再问:没看懂。答案是(O
告诉你这几个结论吧,老师说这个记住就好:rank(AB)
是的n阶单位阵不管左乘还是右乘一个n阶矩阵,都等于该矩阵