2. 厚度为 d 的"无限大"均匀带电导体板两表面单位面积上电荷

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 15:03:00
2. 厚度为 d 的"无限大"均匀带电导体板两表面单位面积上电荷
试证明质量均匀,厚度均匀的球壳内一质点,受到球壳的万有引力为零

设单位面积的球壳质量为t;  球壳内任意一点A质量为m  如图:       1处对A点的

一道大学物理静电场题一无限大均匀带电平面A,其附近放一与它平行的且有一定厚度的无限大平面导体B.已知A上的电荷面密度为+

无限大的均匀带电平板A周围的电场强度是E=σ/ε(运用高斯定理可得).而B板和A板将在静电引力作用下产生静电感应,即远离A板的那面电荷为零,与A板对应的那面和A板上一样,但方向相反!想一下电容器就能明

一层厚度为d的无限大平面,均匀带电,电荷体密度为p,求薄层内外的电场强度分布

高斯定理做外面是pd/2ε0里面距离中心层x位置差场强px/2ε0

电场一"无限大"均匀带电平面A,其附近放一与它平行的有一定厚度的"无限大"平面导体板B,已知A上的电荷密度为+x;,则在

首先要理解电通量的定义,通过某一曲面的电通量=场强和面积元点积的遍及被考虑曲面的面积分,也即=垂直于某一面积元的场强法向分量与面积元乘积的积分.清楚了定义后,针对题目画个图.任意划出一条电场线,中间有

真空中的静电场题目,1.一层厚度为0.5cm的无限大平板,均匀带电,电荷密度为0.0001C/m^3.求(1)这薄层中央

1.(1)E=0;;(2)薄层内与其表面相距0.1m处的电场强度E=ρd/2ε0=(10^(-4)*0.3*10^(-2)/2*8.85*10(-12)=1.695*10^(-4)V/m3)薄层外的电

无限大的均匀带电板内部场强为啥不是零?

电板不是导体,内部的电荷不能自由流动到表面.再问:电板为什么不是导体?怎样才是电板,怎样才是导体,怎样区别电板和导体?再答:电板是不是导体,题目应当明确,不明确的,按照默认的惯例处理,有的题目故意不明

请用高斯定理求面密度为a的无限大均匀带电平面场强

那个希腊字母我用$;来代替面有两边,每边电荷为a*S/2,高斯定理E*S=(a*S/2)/$所以E=a/2$

有厚度为d的无限大导体板上,均匀分布着密度为J=Joez的体电流,试求导体板两侧真空磁感应强度

如下选取矩形环路:矩形所在平面和电流方向垂直,矩形高度上下边和导体板上下平面平行并分别在上下边的两侧,距离上下平面相等,矩形宽度w对矩形上下边和左右边上的B矢量进行分析,由对称性可知,导体外任意点,B

真空中两块互相平行放置的无限大均匀带电平板,其电荷面密度分别为+a和+2a,两板间距为d.

我能不能把电荷面密度用σ来表示,a看起来不太舒服.设电荷面密度为σ的为板A,电荷面密度为2σ的为板B.设板A在两板间产生的场强大小为E1,根据其对称性,其在两板外产生的场强亦为E1,方向相反.对板A取

厚度为d的无限大均匀带电平板,电荷体密度为p,求板内外的场强分布.

用高斯定理∫E·dS=q/ε建坐标,平板中心处x=0在内部做一个柱面,EΔS+EΔS=ρ*2*x*ΔS/ε,E=ρ*x/ε在外部做一个柱面,EΔS+EΔS=ρ*b*ΔS/ε,E=ρ*b/(2ε)

图示一厚度为d的无限大均匀带电平板,电荷体密度为P(设原点在带电平板的中央

用高斯定理∫E·dS=q/ε建坐标,平板中心处x=0在内部做一个柱面,EΔS+EΔS=ρ*2*x*ΔS/ε,E=ρ*x/ε在外部做一个柱面,EΔS+EΔS=ρ*b*ΔS/ε,E=ρ*b/(2ε)

电荷面密度为σ的无限大的均匀带点平面周围空间的电场强度为

由对称可知,电场线是垂直于带电平面的,且是均匀变化的,用高斯定理求,具体怎么求,我也忘记了!

厚度为d的无限大的平板,在板内体电荷密度为p,板外真空,求解空间电势分布和电场分布

电荷面密度为p*d,电场强度应用高斯定律∮E.ds=∑q/ε0构建一个关于平板对称的圆柱高斯曲面,故E=σ/2ε0,U=∫E.dl=σ.r/2ε0,(其中r是距平板的距离.)

试推导无限大均匀带电平面的场强为E=σ/2ε.

真巧现在就只对电学有兴趣啊你应该知道高斯定理吧(1)εESg=Q=σSSg=2S因为高斯面是封闭的所以取一圆柱形的高斯面带入就是E=σ/2ε(2)最简单的思路带电球面里面没有电荷因此E=0而dV=Ed

大学物理-有一“无限大”均匀带电荷密度为 的平面,若设平面所 在处为电势零点,取x轴垂直带电平面

1、首先,x>0时,对E积分所得的电势是负的.2、dl的方向是有l的方向决定的,因为它是l向量的微量.3、当x向量为x正方向时,dx就为正的,x向量为负方向时,dx就为负的.所以,跟x有关.还因为x有

两个“无限大”均匀带“相同电”平面内部电场是否为0?(是不是在内部做高斯面来证明?)

为零,这是因为我们认为达到静电平衡的导体内部并不存在电荷,只会分布在导体表面,这样我们可以直接得到内部电场为零的结论,其实也可以说是高斯定理吧,因为“无源”.再问:哦~那就是说任意形状的一个金属空腔内

两个无限大均匀带等量异号电荷的平行平面间的场强如何求?外侧呢?

无限大俩平板间找不到边界,没有外侧一说.场强跟带电量以及两板距离有关.再问:。。。。。。。还没有外侧了又不是二维的是三维的再答:额,外侧在无穷远处为零,在无穷远处看平板看做点,成平方减小,在较近距离看

两个平行的无限大均匀带点平面,其电荷面密度分别为+σ2和 -σ3.,则A,B,C三个区域的电场强度大小分别为多

A区域是+σ2外边区域,B是两版中间,C是-σ3外的话,因为两板无限大,所以两板电荷均匀分布,分别产生匀强电场E1;E2