不定积分根号x平方-9 xdx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:39:04
∫√(tanx+1)/cos²xdx=∫√(tanx+1)*sec²xdx=∫√(tanx+1)d(tanx)=∫√(tanx+1)d(tanx+1)=(2/3)(tanx+1)^
令x=3sect,则dx=secttantdt∫√(x^2-9)dx/x=∫tantsecttantdt/sect=∫(tant)^2dt=∫[(sect)^2-1]dt=tant-t+C=3/√(x
Sx*根号下(1+x^2)dx=1/2*S(1+x^2)^(1/2)*d(1+x^2)=1/3*(1+x^2)^(3/2)+c
PS:字母后跟数字a的,数字a表示a次冥第一题用倍角公式,将cosx化成cos2x就搞定了.这个很容易,相信不用写具体吧?第二题,令t=Inx,则0
用分步积分法就可以做出来了∫arctan1/xdx=xarctan(1/x)-∫xdarctan1/x=xarctan(1/x)-∫x/[1+(1/x)^2]*(-1/x^2)dx=xarctan(1
∫lnx/√xdx=∫lnx*2/(2√x)dx=2∫lnxd(√x)=2√xlnx-2∫√xd(lnx)、分部积分法=2√xlnx-2∫√x*1/xdx=2√xlnx-2∫1/√xdx=2√xlnx
1.只说方法,这里应该有:a
三角换元 过程如下图:
∫dx/[x^2√(1+x^2)]换元,x=tant=∫d(tant)/[tan^2t√(1+tan^2)]=∫(dt/cos^2t)/[tan^2t/cost]=∫dt/cost*tan^2t=∫c
(x^2+x^{3/2}+3)/x^(1/2)=x^(3/2)+x+3/x^(1/2)积分x^(3/2)dx=2/5x^(5/2)+C积分xdx=1/2x^(2)+C积分3x^(1/2)dx=3*2/
用分部积分法,先把x^2放到dx里面然后分部积分再把dlnx变成1/xdx
令t=√xx=t^2dx=2tdt原式=∫2tcostdt=2tsint-2∫sintdt=2tsint+2cost+C=2√xsin√x+2cos√x+C
这个题要用换元积分法,是令x=asect在慢慢往后算
∫x^2√xdx=∫x^(5/2)dx=2/7*x^(7/2)+C再问:∫x^(5/2)dx里的5/2怎么得出来的?再答:√x=x^(1/2)
太巧了吧.刚答了一个跟这个差不多的题.直接ctrl+C了,三角换元令x=3sect,则dx=secttantdt∫√(x^2-9)dx/x=∫tantsecttantdt/sect=∫(tant)^2
∫e^√xdx=2∫√xe^√xd√x=2∫√xde^(√x)=2√xe^(√x)-2∫e^√xd√x=2√xe^(√x)-2e^(√x)+C
∫x²lnxdx,宜用分部积分法=(1/3)∫lnxd(x³)=(1/3)x³lnx-(1/3)∫x³d(lnx)=(1/3)x³lnx-(1/3)∫
∫xarctanxdx=∫arctanxd(x^2/2)=x^2/2*arctanx+(1/2)∫x^2/(1+x^2)*dx=(1/2)(x^2arctanx+x-arctanx)+C
∫1/[x√(1-x²)]dx=∫1/[x*√[x²(1/x²-1)]dx=∫1/[x*|x|*√(1/x²-1)]dx=∫1/[x²√(1/x