不定积分∫ xdx √(2X^2-4x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 03:02:45
∫√(tanx+1)/cos²xdx=∫√(tanx+1)*sec²xdx=∫√(tanx+1)d(tanx)=∫√(tanx+1)d(tanx+1)=(2/3)(tanx+1)^
∫(2x+5)∧4dx=1/2*∫(2x+5)∧4d(2x+5)=(2x+5)∧5/10+C∫a∧3xdx=1/(3lna)*∫lnaa∧3xd3x=a∧3x/(3lna)
√x=tx=t²dx=2tdt∫arctan√xdx=∫2tarctantdt=∫arctantdt²=t²arctant-∫t²/(1+t²)dt=
∫x^2/(1+x^2)dx=∫(1-1/(1+x^2))dx=x-arctan(x)+C∫sin^2xdx=1/2∫(1-cos(2x))dx=1/2(x-1/2sin(2x))+C
用分步积分法就可以做出来了∫arctan1/xdx=xarctan(1/x)-∫xdarctan1/x=xarctan(1/x)-∫x/[1+(1/x)^2]*(-1/x^2)dx=xarctan(1
1.只说方法,这里应该有:a
原式=∫xsinx/cos^3(x)*dx=-∫x/cos^3(x)*d(cosx)=1/2∫xd(1/cos^2(x))=x/(2cos^2(x))-1/2∫dx/cos^2(x)=x/(2cos^
=(1/3)∫d(3x^2-1)/√(3x^2-1)=(2/3)√(3x^2-1)+C
1/2∫e^2xdx=1/4∫e^2xd2x是因为dx变为d2x了dx=(1/2)d2x1/2∫e^2xdx=1/2∫e^2x(1/2)d2x=1/4∫e^2xd2x
可拆成两项如图,第二项用分部积分计算.经济数学团队帮你解答,请及时采纳.谢谢!
用分部积分法,先把x^2放到dx里面然后分部积分再把dlnx变成1/xdx
(1)原式=∫[x^(2/3)+6x^(1/3)+9]dx=3/5*x^(5/3)+9/2*x^(4/3)+9x+C(2)原式=∫(4x^3-4x^2-x)dx=x^4-4/3*x^3-1/2*x^2
∫x^2√xdx=∫x^(5/2)dx=2/7*x^(7/2)+C再问:∫x^(5/2)dx里的5/2怎么得出来的?再答:√x=x^(1/2)
设y=e^x,则x=lny,dx=dy/y∫(e^(2x)+2e^(3x)+2)e^xdx=∫((e^x)^2+2*(e^x)^3+2)e^xdx=∫(y^2+2*y^3+2)y*dy/y*=∫(y^
∫x²lnxdx,宜用分部积分法=(1/3)∫lnxd(x³)=(1/3)x³lnx-(1/3)∫x³d(lnx)=(1/3)x³lnx-(1/3)∫
∫xarctanxdx=∫arctanxd(x^2/2)=x^2/2*arctanx+(1/2)∫x^2/(1+x^2)*dx=(1/2)(x^2arctanx+x-arctanx)+C
仔细点看!1.令u=x^2,e^xdx=d(e^x)=dv,原式=x^2e^x-2∫xd(e^x)=x^2e^x-2(xe^x-∫e^xdx)=x^2e^x-2(xe^x-e^x)+C2.原式=x^2
答:∫√lnx/xdx=∫√lnxd(lnx)=(2/3)*(lnx)^(3/2)+C