不定积分9 4 根号x(1 根号x)dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:29:24
不定积分9 4 根号x(1 根号x)dx
ln(1-根号X)dx的不定积分

∫ln(1-√x)dx=xln(1-√x)+(1/2)∫√x/(1-√x)dx=xln(1-√x)-(1/2)∫(1-√x-1)/(1-√x)dx=xln(1-√x)-(1/2)x+(1/2)∫1/(

求不定积分dx/根号x(1-x)

令(1-x)/x=t^2,则:1-x=xt^2,∴(1+t^2)x=1,∴x=1/(1+t^2),∴dx=[2t/(1+t^2)^2]dt.∴∫{1/√[x(1-x)]}dx=∫{[(1-x)+x]/

∫1/(根号x+1)dx不定积分

令√x=tx=t^2dx=2tdt原式=∫2tdt/(1+t)=2∫[1-1/(1+t)]dt=2t-2ln(1+t)+C

不定积分ln(x+1)/根号x dx

用分步积分法∫ln(x+1)/√xdx=2∫ln(x+1)d√x=2ln(x+1)*√x-2∫√xdln(x+1)=2ln(x+1)*√x-2∫√x/(x+1)dx对于∫√x/(x+1)dx令√x=t

1/(根号x+3次根号x)的不定积分

再答:������˼���ҿ����ˡ��ڶ������һ���Ⱥź����Ϊ(t^3+1)-1�ٷ���?����(t^3-1)+1��

求1+根号x分之1-根号x之不定积分

用t代换根号x再答:

不定积分1/(根号下x+三次根号下x)

可以用换元法解此题.令x=t^6则有原式=∫6t^5/(t^3+t^2)dt=∫6t^3/(t+1)dt然后将t^3分解为t+1的多项式,求出积分后将X=t^6代入则得结果

x^3/[根号(1-x^2)]不定积分

∫x^3/√(1-x^2)dxletx=sinydx=cosydy∫x^3/√(1-x^2)dx=∫(siny)^3dy=-∫(siny)^2dcosy=-∫[1-(cosy)^2]dcosy=(co

lnx/根号x不定积分

∫lnx/√xdx=2∫lnxd√x=2lnx√x-2∫1/√xdx=2lnx√x-4√x+C

高等数学不定积分题目,x/(1+根号x)的不定积分

欢迎追问哦!亲再问:�Ǹ���������ӻ��и�X再答:������˼����������Ŀ�ˣ����¥�µ���ʾ������һ�£�

不定积分(1/根号x)(e^根号x)dx

答:∫(1/√x)e^(√x)dx=2∫(1/2√x)*e^(√x)dx=2∫e^(√x)d(√x)=2e^(√x)+C

不定积分1/(根号下x-三次根号下x)

令x^(1/6)=u,则x=u^6,dx=6u^5du,√x=u³,x^(1/3)=u²∫1/[x^(1/2)-x^(1/3)]dx=∫6u^5/(u³-u²)

求不定积分 (根号x-1)/x dx

这是用了一个常用的公式,推理如下

dx/x根号1-x平方 不定积分

∫1/[x√(1-x²)]dx=∫1/[x*√[x²(1/x²-1)]dx=∫1/[x*|x|*√(1/x²-1)]dx=∫1/[x²√(1/x

不定积分1/(根号x)*(1+x)dx

∫1/[√x(1+x)]=∫1/(2√x)]=1/2∫1/√x=1/2∫(2√x)/√xd√x=1/2∫2d√x=∫d√x=√x再问:为什么你和答案不一样..再答:答案是什么?我那个还可以化的,因为我