1除以根号n的正切的极限

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 13:18:05
1除以根号n的正切的极限
用夹逼定理证明1除以N次根号下N!的极限是0

注意到,对于k=1,2,……,N-1,都有(N-1-k)(k-1)>=0整理得k(N-k)>=N-1上式分别取k=1,2,……,N-1.然后相乘,得(N-1)!*(N-1)!>=(N-1)^(N-1)

1/根号n(n-1)的极限等于多少?1/根号(n+1)的极限等于多少?

随着n无限增大,n(n-1)无限增大,整个分母部份也随之无限增大,所以整个分数无限减小并趋近于0,所以随着n无限增大趋于正无穷,极限应该为0

根据数列极限的定义证明:根号下n的平方与a的平方的和,再除以n,其极限为1

lim(n→∞)[√(n^2+a^2)/n]=lim(n→∞)√[(n^2+a^2)/n^2]=lim(n→∞)√[1+(a/n)^2]∵lim(n→∞)a/n=0,∴lim(n→∞)√[1+(a/n

(n+1)的n次方除以n的n次方的极限是多少

不知道你问哪种,n->∞还是n->0?我都提供以上2种方法吧.图片

求证 :n * (根号n - 根号(n+1))的极限是负无穷大

n*(根号n-根号(n+1))首先因为根号n<根号(n+1),根号n-根号(n+1)<0其次因为(n*根号(n+1))²-(n*根号n)²=(n+1)n²-n*n

求当x趋于无穷大时,x的反正切函数除以x的极限

arctanx的极限是pi/21/x的极限是0因此这个的极限是0

n次根号下1加x减一除以x,x趋近于0的极限

能够把题目描述清楚点吗?

求lim(n→无穷)(根号(n+1)-根号n)*根号n 的极限

分子分母乘以(根号(n+1)+根号n)原式=根号n/(根号(n+1)+根号n)=1/(1+根号((n+1)/n))n趋向无穷时原式为1/2

数列{根号( n+2)-2根号(n+1)+根号n},求前n项和的极限

a(n)=[(n+2)^(1/2)-(n+1)^(1/2)]-[(n+1)^(1/2)-n^(1/2)],s(n)=a(1)+a(2)+...+a(n-1)+a(n)=[3^(1/2)-2^(1/2)

数列的极限lim三次根号下N的平方加N 除以N 是什么?书上写的看不懂啊

这几个题目很远代表性,你平时作业之所以不会做,可能是因为你基本的东西部知道,其实书本上有一些我下面解题用到的某个函数在某种情况下的极限,把这些记清楚,且要知道一些基本的形式如何变化,一般的求极限就没有

求lim(根号下n+1)-(根号下n),n趋于无穷大的极限

√(n+1)-√n=[√(n+1)-√n]*[√(n+1)+√n]/[√(n+1)+√n]=1/[√(n+1)+√n]那么显然在n趋于无穷大的时候,分母[√(n+1)+√n]趋于无穷大,所以√(n+1

求证n除以n次根号下n的阶乘的极限是e

再问:苏兄弟!太感谢您了!能不能和您交流交流?再问:不好意思,您可以把图片再发一遍吗?谢谢!再答:非常欢迎! 是什么图片?   再问:就是刚才的解答图片,我的手

求极限:(n次根号下n的阶乘)除以n n趋向无穷,是不是用定积分呀?

这道题可以用一下数学分析(高数)中的Stirling公式:n!((2*pi*n)^0.5)*((n/e)^n),所以答案是1/e.

求极限lim n→∞ 根号n乘以sin n 除以n+1

用无穷小量分出法:分子和分母同除以n,则有,此时分子:根号n分之1是无穷小量,而sinn是有界函数,无穷小量与有界函数的乘积还是无穷小量,所以分子极限是零.此时分母:1+1/n,其中1/n是无穷小量,

用数列极限定义 证明n的根号n次方的极限为1

你可以假设1+a>n的根号n次方根.然后同为正数,等价于(1+a)n次方大于n.建立方程f(x)=(1+a)x次方,g(x)=x,因为x=0时,f(x)>g(x),然后求导数,x乘以(1+a)(x-1

求极限当n->正无穷时ln n的10次方与sin n的和除以根号n减3的极限

因为sinx是周期函数,原来不等式等价为lim(n->正无穷)10logn/根号n,此极限为无穷比无穷,用诺必达法则,分子和分母分别求导,转化为lim(n->正无穷)20/根号n=0

2n除以根号下(n^2加上n )当n接近无穷时求它的极限!

分子分母除以n=2/[√(n²+n)/n]=2/√[(n²+n)/n²]=2/√(1+1/n)n趋于无穷则1/n趋于0所以极限=2/1=2

lim(n→∞) 根号n+1 +根号n 的极限是多少

题目没抄错的话你认为结果是多少呢?不明显是无穷大的吗,这点数学头脑都没有?!个人认为原题应该是求:lim(n→∞)根号n+1-根号n的极限是多少这样的话,给(根号n+1-根号n)乘以(根号n+1+根号

1+1除以根号2+1除以根号3+1除以根号4+...1除以根号n与根号n的大小关系拜托各位大神

因为√k+√(k-1)>√k(当k>1,且k是整数时)所以1√k>1/[√k+√(k-1)]所以1+1除以√2+1除以√3+1除以√4+...1除以√n>1+1除以(√2+1)+1除以(√3+√2)+

根号n+1-根号n的极限是什么?

lim[√(n+1)-√n]=lim{1/[√(n+1)+√n]}=0再问:我就是不懂为什么1/[√(n+1)+√n]}=0就等于0了?!再答:|{1/[√(n+1)+√n]}|