上半球面0≤z≤√a²-x²-y²与圆柱体x² y²≤ax(a>0)的
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:51:32
再问:谢谢(不过最后一步写错了,5/2还要乘2π/3
这是第一类曲面积分,由于积分曲面关于三个坐标面均是对称的,而被积函数分别关于z,x,y是奇函数,因此本题结果为0再问:有过程么再答:没过程,直接写结果,分析过程已写给你了。
之后,因为积分区域关于x轴和y对称,所以对x和y的积分都是0∫∫∫(x+y+z)dv=∫∫∫zdv=∫zdz∫∫dxdy=∫(0->1)[z*(πab(1-z^2))]dz=πab/4其中,πab(1
你的答案是正确的,书上给的答案错误.在计算∫Lds时应当用曲线的周长,所以你给出球大圆的周长是正确的.而书上说的椭圆2y^2+z^2=a^2其实是那个球大圆投影到XOY面后的椭圆,这个显然不是题中的曲
这题是一个第二类曲面积分的题目,把邮箱发给我,我给你发过去,我已经编辑成word格式了.看着比较舒服.
dz/dx=-x/√(4-x²-y²),dz/dy=-y/√(4-x²-y²)dS=√[1+(dz/dx)²+(dz/dy)²]dxdy=2
不用那么麻烦把曲面公式代入被积函数中∫∫(x^2+y^2+z^2)ds=∫∫a^2ds=(a^2)*4πa^2=4πa^4再问:但答案是8πa^4再答:答案是4πa^4,我用不同的方法算了一遍,请看:
题目抄错了.肯定是有关,这太容易了.应该是与h成正比,且与c无关.面积=2πah
半径为R的球在第一卦限内的体积为πRRR/6,设α为平面y=0和平面y=kx所成的两面角,则k=tanα,α=arctank,故所求体积为S=πRRR/6×(α÷π/2)=πRRR/6×(2α/π)=
将y=x代人x^2+y^2+z^2=a^2,得2y^2+z^2=a^2,即y^2/(a^2/2)+z^2/a^2=1,得参数方程x=y=(a/√2)cost,z=asint,则√[(x')^2+(y'
计算到下面部分去了.以z=z截立体,则1
显然由于对称性,x=y=0z=∫∫∫xdxdydz/∫∫∫dxdydz=∫[0,2π]dθ∫[0,π/2]cosφsinφdφ∫[a,A]ρ^3dρ=2π[sin^2(φ)/2][0,π/2]ρ^4/
∫∫∫(x^2+y^2+z^2)dxdydz=∫(0,2π)dθ∫(0,π/2)sinφdφ∫(0,a)r^4dr=(2π/5)a^5
【分析】设Γ是一条空间曲线,Π是一张平面,对于Γ上任意一点P,令Π(P)是点P在平面Π上的投影点,即Π(P)∈Π,向量Π(P)P⊥Π.所有投影点的集合称为Γ在平面Π上的投影曲线.(1)两曲面在xoy面
Jz=a∫(r,-r)(r^2-y^2)dy=4ar^3/3
在半球面∑上添加圆面S:(x²+y²=1,z=0),使之构成封闭曲面V=∑+S.∵∫∫x³dydz+y³dzdx+z³dxdy=0(∵z=0,∴dz=
x²+y²+z²=zx²+y²+(z-1/2)²=(1/2)⁵-->r=cosφ∫∫∫√(x²+y²+z
Σ分为两部分Σ1:z=a+√(a^2-x^2-y^2)与Σ2:z=a-√(a^2-x^2-y^2).Σ1与Σ2在xoy面上的投影区域都是D:x^2+y^2≤a^2.Σ1与Σ2上,dS=a/√(a^2-