三重积分区域是由x² y² z²=4及xoy围城的几何体关于谁对称
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:46:04
题目中z=0表示的就是xoy平面,画个大概的立体图容易知道,此时所求的区域在Z正半轴,Z>0,当x=y且z=xy时,x=y=0,x=1是x的积分上限,若被积区域在x>1的范围,就不能构成封闭的积分区域
{z=-√(x²+y²){z=-1-1=-√(x²+y²)x²+y²=1-->r=1切片法:∫∫∫zdV=∫(-1→0)zdz∫∫Dzdxd
∫∫∫(x^2+y^2+z^2)dxdydz=∫(0,2π)dθ∫(0,π/2)sinφdφ∫(0,a)r^4dr=(2π/5)a^5
只要是来“轮着换”即可,例如x+y+z=a,把x换成y,y换成z,z换成x,方程不变,即方程有轮换对称性.再问:意思是要换都得换?再答:没错,按顺序把所有的都换一遍即可。
原来是极坐标变换啊,投影区域是矩形,还真有些难度的.同样用对称性∫∫∫ΩdV=4∫∫∫Ω₁dV=4∫(0→1)∫(0→1-x)∫(1/2)(x²+y²)→x²
第一个是对的!其余两个都不对!错在:将x^2+y^2=z代入积分式.因为在立体内部x^2+y^2
因为,曲面z=x^2+y^2在柱坐标下的方程为z=ρ^2这题如果是计算积分值的话,正解如下:因为z=常数的平面与Ω截得区域的面积为πz所以∫∫∫zdxdydz=∫(0~4)z(πz)dz=(1/3)π
先求旋转曲面的方程设旋转曲面上一点是(x0,y0),yoz面上的曲线为y^2=2z,则√(x0^2+y0^2)=y得旋转曲面的方程为:z=(x^2+y^2)/2z=(x^2+y^2)/2=5得Dxy:
可能是你的哪里算漏了吧
原式=∫(0,4)dz∫∫(Dz)zdxdy=∫(0,4)zdz∫∫(Dz)dxdy=∫(0,4)z×πz^2dz=π∫(0,4)z^3dz=π×1/4×z^4|(0,4)=64π其中Dz:x^2+y
∫∫∫ΩzdV=∫(0→1)zdz∫∫Dxydxdy=∫(0→1)z•π(2z)dz=2π•(1/3)[z³]|(0→1)=2π/3或∫∫∫ΩzdV=∫∫Dxydxd
累次积分,投影到xoy面上,先对Z积分,积分限(0,xy),再对y积分(0,x),x积分(0,1)=1/28*13
首先围成的是下边是一个抛物面体上部是球的部分,让z1=z2,则交界处的交线方程是x^2+y^2=4,且对应的z=2,因为dv=r^2sinadado(a为r与z轴夹角,o为在xoy面内投影与x轴夹角)
x²+y²+z²=zx²+y²+(z-1/2)²=(1/2)⁵-->r=cosφ∫∫∫√(x²+y²+z
所围成的闭区域是在第一卦限,在z方向的范围:底面为z=0,即为xoy坐标平面,上面即为马鞍形双曲面z=xy.x和y的范围均为从0到与z轴平行的平面x+y=1.所以,z的积分范围为[0,xy]x的积分范
积分域关于x轴和y轴都对称,所以对x对y的积分都是0