三角形ABC外心为O,垂心为H,求证:向量OH=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:03:36
向量OH=向量OA+向量+OB+向量OC向量OG=(向量OA+向量OB+向量OC)/3,向量OG*3=向量OH所以O、G、H三点共线
【【注】】【1】以下大写字母均表示向量,前面不再写“向量”二字.如“向量AB”就写为AB.【2】三角形高线的性质:任意一个三角形,其三条高线交于一点.该点就称为三角形的垂心.【3】三角形的外心:易知,
方法一:m=1建立坐标系,设出A、B、C的坐标,计算出O,H的坐标.可得.方法二:如果是选择或填空题,可以采取特殊化的方法.让三角形ABC是直角三角形.容易得到m=1
这道题要把三角形放入平面直角坐标系中去,我说,你在草稿纸上画下图吧,图我画不上去首先,建立平面直角坐标系,将点A放在坐标原点上,点C放在x轴正半轴上,其中AC的长度为3,点B则放在第一象限中,AB的长
1.O为外心,即O为三角形ABC的外接圆圆心,有
题目不对吧?应该是OH=1/3(OA+OB+OC)证明:OH=OA+AH=OA+2/3AD=OA+2/3(AB+BD)=OA+2/3(AB+1/2BC)=OA+2/3AB+1/3BC=OA+2/3(O
字母可能有不同,是从我空间里复制出来的.证明:作ABC的外接圆,直径CN,连接AN、BN因为CN是直径所以NB⊥BC,NA⊥AC因为AB⊥BC,BE⊥AC所以NB//AB,NA//BE所以四边形ANB
1.连接AD和HC,由AH⊥BC,DC⊥BC得AH‖DC,同理AD‖HC,于是AHCD为平行四边形,所以向量AH=向量DC2.向量AH=向量DC=2向量OB+向量BC=2向量OC+向量CB,两式相加得
先将向量OB和向量OC相加,得到向量OD(向量OD过BC中点)然后证向量OD+向量OA=向量OH即证AHOD为平行四边形首先OD‖AH(都垂直BC)现在只要证AH=OD=2OE(E为OD和BC交点,即
取BC的中点M,则2向量OM=向量OB+向量OC=向量OH-向量OA=向量AH所以OM//AH,AH⊥BC其他同理可证.
用同一法若点O为三角形ABC的外心,则向量OH=向量OA+向量OB+向量OC如果存在一点Q,使向量QH=向量QA+向量QB+向量QC,那么在AB、BC、CA方向上Q、O位置均相同
百度百科“三角形的四心”,有详尽的相关证明
1、当O为底面外心时,O至底面A、B、C三顶点距离相等,即是外接圆半径,它们都是侧棱在底面的射影,故由此可知,当三条侧棱PA=PB=PC时,O为外心.2、当O为底面内心时,距底面三边距离相等,即为内切
140度,在三角形中,由于外接圆O的圆心为O点,角BAC为圆周角,在同一个圆中,同弧对应的圆周角是圆心角的一半.
(1)作AO延长线OD,∠BOC=∠BOD+∠DOC=2∠BAO+2∠OAC=2*58°=116°(2)O向AB、BC、CD边做垂线,分别交于点D、E、F,则有,∠DOF=180-58=122°,∠B
证明如下设O,H分别为外心和垂心取BC中点M,连接AM交OH于G,下面只要证明G是重心就行了OM⊥BCAH⊥BCΔAHG∽ΔMOG⇒AG/GM=AH/OM作ME∥BH交CH于E,取AC中点
一楼正解R是外接圆半径,在该题中就是AO建议你去网上查看一下欧拉线的证明,虽然在证明中没有直接给出AH=2R*cosA,但也可以帮住你理解(除非你对此没有兴趣而只想知道当前这个题的解法)或者你去看这个