三角形ABC外心为O,垂心为H,求证:向量OH=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:03:36
三角形ABC外心为O,垂心为H,求证:向量OH=
设三角形ABC的外心为O,垂心为H,重心为G,求证:O,G,H三点共线

向量OH=向量OA+向量+OB+向量OC向量OG=(向量OA+向量OB+向量OC)/3,向量OG*3=向量OH所以O、G、H三点共线

设O为三角形ABC外心,平面上一点P使向量OP=向OA+向OB+向OC 则点P是三角形ABC的垂心,为什么?详细步骤!

【【注】】【1】以下大写字母均表示向量,前面不再写“向量”二字.如“向量AB”就写为AB.【2】三角形高线的性质:任意一个三角形,其三条高线交于一点.该点就称为三角形的垂心.【3】三角形的外心:易知,

向量结合三角形已知:△ABC,O为△ABC的外心,H为△ABC的两条高的交点,若OH=m(OA+OB+OC) [OH,O

方法一:m=1建立坐标系,设出A、B、C的坐标,计算出O,H的坐标.可得.方法二:如果是选择或填空题,可以采取特殊化的方法.让三角形ABC是直角三角形.容易得到m=1

1三角形ABC的三边长为2,3√3,设其三条高的交点为H,O为三角形ABC的外心,则OH=?

这道题要把三角形放入平面直角坐标系中去,我说,你在草稿纸上画下图吧,图我画不上去首先,建立平面直角坐标系,将点A放在坐标原点上,点C放在x轴正半轴上,其中AC的长度为3,点B则放在第一象限中,AB的长

三角形ABC的外心为O,重心为H,求证,向量OH=OA+OB+OC

题目不对吧?应该是OH=1/3(OA+OB+OC)证明:OH=OA+AH=OA+2/3AD=OA+2/3(AB+BD)=OA+2/3(AB+1/2BC)=OA+2/3AB+1/3BC=OA+2/3(O

如何证明设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL

字母可能有不同,是从我空间里复制出来的.证明:作ABC的外接圆,直径CN,连接AN、BN因为CN是直径所以NB⊥BC,NA⊥AC因为AB⊥BC,BE⊥AC所以NB//AB,NA//BE所以四边形ANB

已知点O是三角形ABC的外心,H为垂心,BD为外接圆直径,求证(1)向量AH=向量DC; (2)向量OH=向量OA+OB

1.连接AD和HC,由AH⊥BC,DC⊥BC得AH‖DC,同理AD‖HC,于是AHCD为平行四边形,所以向量AH=向量DC2.向量AH=向量DC=2向量OB+向量BC=2向量OC+向量CB,两式相加得

三角形ABC中,O是外心,BD为外接圆直径,H为重心.求证:向量OH=OA+OB+OC

先将向量OB和向量OC相加,得到向量OD(向量OD过BC中点)然后证向量OD+向量OA=向量OH即证AHOD为平行四边形首先OD‖AH(都垂直BC)现在只要证AH=OD=2OE(E为OD和BC交点,即

O为三角形ABC的外心,H为平面内的一点,且满足,向量OH向量=OA+向量OB+向量OC.求证H为ABC的垂心

取BC的中点M,则2向量OM=向量OB+向量OC=向量OH-向量OA=向量AH所以OM//AH,AH⊥BC其他同理可证.

已知三角形ABC的垂心为H,平面内一点O满足,向量OH=向量OA+向量OB+向量OC,求证:点O为三角形ABC的外心

用同一法若点O为三角形ABC的外心,则向量OH=向量OA+向量OB+向量OC如果存在一点Q,使向量QH=向量QA+向量QB+向量QC,那么在AB、BC、CA方向上Q、O位置均相同

在三棱锥P-ABC中O为顶点P在底面的射影何时O为底面外心何时为内心何时为垂心

1、当O为底面外心时,O至底面A、B、C三顶点距离相等,即是外接圆半径,它们都是侧棱在底面的射影,故由此可知,当三条侧棱PA=PB=PC时,O为外心.2、当O为底面内心时,距底面三边距离相等,即为内切

O为三角形ABC的外心,若角BAC=70度,则角BOC的度数为

140度,在三角形中,由于外接圆O的圆心为O点,角BAC为圆周角,在同一个圆中,同弧对应的圆周角是圆心角的一半.

如图,已知△ABC中58°,分别求∠BOC的度数 ①O为外心②O为内心③O为垂心

(1)作AO延长线OD,∠BOC=∠BOD+∠DOC=2∠BAO+2∠OAC=2*58°=116°(2)O向AB、BC、CD边做垂线,分别交于点D、E、F,则有,∠DOF=180-58=122°,∠B

如图,在三角形ABC中,H为垂心,G为重心,O为外心.求证:H,G,O三点共线,且HG=2GO

证明如下设O,H分别为外心和垂心取BC中点M,连接AM交OH于G,下面只要证明G是重心就行了OM⊥BCAH⊥BCΔAHG∽ΔMOG⇒AG/GM=AH/OM作ME∥BH交CH于E,取AC中点

O、H分别是三角形ABC的外心和垂心,AO=AH,问角BAC为多少度?请给出详细证明

一楼正解R是外接圆半径,在该题中就是AO建议你去网上查看一下欧拉线的证明,虽然在证明中没有直接给出AH=2R*cosA,但也可以帮住你理解(除非你对此没有兴趣而只想知道当前这个题的解法)或者你去看这个