三角形abc和bde都为等腰直角三角形,点e在ab上,点f为cd的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 21:10:55
1、∵△ABC和△BDE是等腰直角三角形(AB=AC,BE=BD)∴∠ABC=∠DBE=45°∴∠DBC=∠DBE+∠ABC=90°∵F是CD中点∴BF=1/2CD=CF=DF∴∠BCF=∠CBF2、
ab=bcbd=be∠abd=∠ebd=90°△abd≌△cbe(边角边)ad=ce
证明:∵∠ABC=90,M为EC的中点∴BM=EM=EC/2(直角三角形中线特性)∴∠MBE=∠MEB∴∠BME=180-2∠BEM∵∠ADE=90,AD=ED∴∠AED=45,∠EDC=90∴DM=
过M作MN⊥BD于N,由M是EC中点,∴MN是直角梯形CBDE的中位线,∴2MN=BC+DE=BD,又N是BD中点,∴MN是BD垂直平分线,∴MB=MD.由MN=(1/2)BD,∴∠BMD=90°(三
因为三角形ABC及DBE都为等腰直角三角形,所以,AB=BC,BD=BE,∠ABC=∠DBE=90°,而∠EBC=∠DBE+∠CBD,∠DBA=∠ABC+∠CBD∠EBC=∠DBC,所以△EBC≌△D
根据图形可知:△BDE底边BD上的高:△ABCBC上的高=2:(2+6)=1:4, S△BDE:S△ABC=(12×3×1):(12 ×7×4)
△ABC和△BDE都是等边三角形∴∠ABD=∠CBE=60AB=BCBD=BE(边角边相等)∴△ABD全等于△CBE∴AD=CE
BE=DC且BE⊥DC∵∠BAD=∠CAE=90°∴∠BAD+∠BAC=∠CAE+∠BAC即∠DAC=∠BAE又∵AD=ABAC=AE∴△DAC≌△BAE∴BE=CD∠DCA=∠BEA∵∠CAE=90
1、∵M是BC的中点,延长AM到F,使AF=2AM,连接BF,由AF与BC互相平分易证△BMF≌△CMA,得BF=AC,∠MBF=∠MCA,随之BF∥AC,∠ABF=180°-∠BAC;∵∠BAD=∠
延长AF至M,使得FM=AF,连结BM、CM,AF=MF,BF=CF,则四边形ABMC是平行四边形,(对角线互相平分的四边形为平行四边形),BM=AC,在△ABM和△DAE中,AB=DA,AE=AC,
再问:答案是6再答:你是不是把面积抄错了,14真难算再问:对滴再答:把14换成对的数就行,自己算一下再问:真是14,标答是6再答:BD=三分之二BC,这个对不对呢
证明:∵△ABC和△BDE都是等边三角形∴BE=BD,BA=BC,∠C=∠CBA=∠DBE=60°∴∠ABC-∠ABD=∠DBE-∠ABD∴∠CBD=∠AEB∴△ABE≌△CBD(SAS)∴∠BAE=
1、∵△ABC和△BDE是等腰直角三角形(AB=AC,BE=BD)∴∠ABC=∠DBE=45°∴∠DBC=∠DBE+∠ABC=90°∵F是CD中点∴BF=1/2CD=CF=DF∴∠BCF=∠CBF2、
在EP上取点G,使EG=DF,连接BG,EB=ED.∠BEG=∠BDF=90°,EG=DF,——》△BEG≌△BDF,——》BG=BF,∠EBG=∠DBF,——》∠GBF=∠EBD=90°,∠PBF=
也是39度,∵AB=CB,∠ABD=∠CBE=180°-60°=120°BD=BE∴△ABD≌△CBE∴∠BCE=∠BAD=39°再问:十分感谢再答:可以推荐一下我吗?再问:太给力了,你的回答完美解决
PA=PD,PA⊥PD,理由是:证明:延长AP至F,使AP=PF,连接EF、AD,在△APC与△FOE中,AP=PF∠APC=∠FPECP=EP,∴△APC≌△FOE(SAS),∴AC=EF,∠ACP
1.(1)延长平面BCC1B,作CM‖BC1,交B1C1延长线于M,则A1CM就是直线BE和A1C所成的角,AC=2a,AB=BC=√ 2a,BC1=√(BC^2+CC1^2)=
两边(AB=CB,BE=BD)夹角(ABE=CBD)相等,得出ABE与CBD为全等三角形故AE等于CD