三角形ABC和ade是等腰直角三角形 角ABC等于角ade等于90度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 22:02:49
(1)∵AB=AC,AD=AE,角BAD=90度+角CAD=角CAE,∴三角形BAD与三角形CAE全等,∴BD=CE(2)由(1)知角ABD=角ACE,也就是角ABM=角ACM角BCM+角MCB=45
如图: 线段BD绕A逆时针旋转90º,到达CE.B到达C,D到达E.∴BD=CE, BD⊥CE.
证明:∵∠ABC=90,M为EC的中点∴BM=EM=EC/2(直角三角形中线特性)∴∠MBE=∠MEB∴∠BME=180-2∠BEM∵∠ADE=90,AD=ED∴∠AED=45,∠EDC=90∴DM=
E想起来了!,三角形是等腰直角三角形,所以AE=ADAB=ACEAC=BAC=90所以全等△EAC=BAC由此得知ABD+ADB=FDC=FCD=90FDC=ADB是对角所以在三角形FDC中FCD+F
图呢再问:����
延长ED交BC于H,连结AF、FH、HG,因为△ACB、△ADE都为等腰直角三角形,所以∠ACH=90°,∠AEH=90°,∠CAD=45°,∠EAD=45°,所以∠CAE=∠CAD+∠EAD=90°
解题思路:(1)据等腰直角三角形的性质,及“直角三角形斜边上的中线等于斜边的一半”可解答此题。(2)先证明△MDE≌△MFC,得出AD=ED=FC,再作AN⊥EC于点N,证出△DBF是等腰直角三角形,
过M作MN⊥BD于N,由M是EC中点,∴MN是直角梯形CBDE的中位线,∴2MN=BC+DE=BD,又N是BD中点,∴MN是BD垂直平分线,∴MB=MD.由MN=(1/2)BD,∴∠BMD=90°(三
(1)证明:∵点M是Rt△BEC的斜边EC的中点,∴BM=1/2EC=MC,∴∠MBC=∠MCB.∴∠BME=2∠BCM.同理可证:DM=1/2EC=MC,∠EMD=2∠MCD.∴∠BMD=2∠BCA
两个垂直的BD=2MN;建立坐标,以B点为原点,BA为y轴,BC为x轴,假定BC=1,AD=X则可以写出坐标B(0,0),D(X,1),N是BD中点所以坐标N(X/2,1/2)M点(【1+X】/2,【
(1)DF=BF且DF⊥BF.(1分)证明:如图1:∵∠ABC=∠ADE=90°,AB=BC,AD=DE,∴∠CDE=90°,∠AED=∠ACB=45°,∵F为CE的中点,∴DF=EF=CF=BF,∴
每个等腰三角形的腰长都是前一个的√2/2因此所做的第N个是(√2/2)^N
因为三角形ABC是等腰直角三角形,所以角ABC=角ACB=45度,AB=AC.因为ec垂直bc,所以角ecb=90度,所以角ace=45度,又因为AB=AC,ce=bd,所以三角形ABD与三角形ACE
证明、∵四边形ACDE是平行四边形,AE∥CD且AE=CD,三角形ADE是等腰直角三角形∴CD=AE=AD,∠ADC=∠EAD=90°,∴三角形ADC是等腰直角三角形作AM⊥DE于M,连接BM,则M为
由题意可得AC=ABAE=AD∠ABC=∠DAE(直角三角形的两个直角)所以∠ABC+∠DAB=∠DAE+∠DAB因为AC=AB∠DAC=∠EABAE=AD(三角形全等SAS)所以可得△DAC≌△EA
那个“清清楚楚”的“A”应该是“B”S⊿DHG=24/4=6S⊿AHG=(S⊿DHG)/2=3S⊿ABC=S⊿BHE+S⊿AHG+S⊿CGF+S正方形HEFG=6+6+3+12=27(平方米)
首先我不得不说,这道题是不成立的,除非你规定出三角形的顶点,以及M可以在延长线上,下面我举例说明:画一个等腰直角三角形,角A是直角,两直角边为AB、AC,斜边是BC在AB、AC上取D、E两点,连线后,