三角形abc内角abc所对边abc

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:49:27
三角形abc内角abc所对边abc
abc为三角形ABC三个内角所对的边,且asinAsinB+bcos方A=根号3a.当cosC=三分之根号三,求cos(

根据正弦定理a/sinA=b/sinB=c/sinC,原式可变形为:bsin2A+bcos2A=跟号3a,即b=根号3a.将上面的结果带入余弦定理“cosC=(a^2+b^2-c^2)/(2·a·b)

在三角形ABC,三内角A,B,C所对的边分别为a,b,c,若B=60度,c=(根号3-1)a.

A+C=120°,C=120°-A由正弦定理a/sinA=c/sinCa=(3^(1/2)-1)csinA=(3^(1/2)-1)sinC(3^(1/2)+1)sinA=2sin(120°-A)=3^

已知三角形ABC的内角ABC所对的边分别为abc 且a=2cosB=五分之三若b=4求sinA的值若三角形ABC的面积=

1、a=2,cosB=3/5,sinB=4/5,b/sinB=a/sinA,4/(4/5))=2/sinA,sinA=2/5.2、S△ABC=acsinB/2=2*c*4/5/2=4,c=5,b^2=

在三角形abc内角ABC的对边abc且a

由a+b+c=20(1)由S=(1/2)acsinB=10√3,(1/2)ac×(√3/2)=10√3,∴ac=40(2)由cosB=(a²+c²-b²)/2ac=1/2

三角形ABC中,三个内角ABC所对的边分别为abc若B=60度,a=(根号3-1)c

1.A+C=120°,C=120°-A由正弦定理a/sinA=c/sinCa=(3^(1/2)-1)csinA=(3^(1/2)-1)sinC(3^(1/2)+1)sinA=2sin(120°-A)=

已知三角形的内角ABC所对的边分别是abc若a平方+ab+b平方-c=0则角c的大小是

应该是c²a²+b²-c²=-ab所以cosC=(a²+b²-c²)/2ab=-1/2C=120度

已知三角形ABC的内角A,B,C所对应的边为abc,且a2 b2 c2

(1)由余弦定理,得a2+b2-2ab*cosC=c2①,又有a2+b2=c2+ab②,①②联立,得cosC=1/2,所以∠C=π/3(2)有正弦定理,得a/sinA=c/sinC,所以c=6

已知a.b.c分别是三角形ABC的三个内角A.B.C所对的边,若三角形ABC面积S三角形ABC=2分之根号3 c=2.A

S=1/2bcsinA=根号3/21/2b*2*根号3/2=根号3/2得b=1.a^2=b^2+c^2-2bc*cosA=1+4-2*1*2*1/2=3a=根号3a/sinA=b/sinBa/(根号3

三角形ABC中,三个内角ABC所对的边分别为abc若B=60度,c=(根号3-1)a

解∵∠B=60°∴A+C=120°,C=120°-A由正弦定理a/sinA=c/sinCc=(√3-1)asinC=(√3-1)sinA(√3+1)sinC=2sin(120°-C)=√3cosC+s

三角形abc的三个内角a,b,c所对的边分别为a,b,c,asinasinb+bcos2a=根号2a

(1)根据正弦定理a=2rsinA,b=2rsinB其中r为外接圆的直径代入得2rsinAsinAsinB+2rsinB(cosA)^2=√2*2rsinA[(sinA)^2+(cosA)^2]sin

三角形ABC的三个内角A,B,C,所对的边分别是a,b,c,asinAsinB+bcos2A=a×根号2,b比a等于多少

根据正弦定理,原函数asinAsinB+bcos2A=a×根号2等价于sin²AsinB+sinBcos2A=sinA*√2.①cos2A=1-2sin²A,等式①等价于sinBs

在三角形ABC的三个内角A,B,C所对的边分别为a,b,c,asinAsinB+bcos^2A=√2a.(1)求

1、正弦定理:a/sinA=b/sinB=c/sinC得出:a*sinB=b*sinAasinAsinB+bcos^2A=b*sin^2A+bcos^2A=b=√2a即b/a=√2a2、余弦定理:2a

三角形内角ABC所对边abc满足(a+b)^2+c^2=4,角c=60度,求ab值

我认为你的题目抄错了.应该是(a+b)^2-c^2=4吧?如果我是对的,那么就用前面两位的方法去做.(a+b)^2-c^2=4(1)由余弦定理,c²=a²+b²-2abc

已知a,b,c分别是三角形ABC三个内角A,B,C的对边

1、c=2,A=60°则AC边上的高=√3b=AC=面积×2/高=(√3/2)×2/√3=1因为b=c*sin60°三角形为直角三角形a=直角边=高=√32、由正弦定理a/b=sinA/sinB由ac

已知三角形ABC的三个内角ABC所对的三边分别是abc,三角形面积S=C方-(a-b)方,则tan2/c等于

请问是“tan2/c”吗?我是按照tan(C/2)算得,结果是1/4∵cosC=(a²+b²-c²)/(2ab)∴2ab*cosC=a²+b²-c&s

a.b,c分别是三角形ABC的三个内角A B C所对的边,若a=ccosB,则△ABC的形状

/>利用正弦定理a/sinA=b/sinB=c/sinC∵a=ccosB∴sinA=sinCcosB∵sinA=sin(π-(B+C))=sin(B+C)∴sin(B+C)=sinCcosB即sinB

在三角形ABC中,三个内角A,B,C所对的边为a,b,c,已知2B=A+C,A

因为2B=A+C,A+B+C=180°,所以B=60°,A+C=120°,所以0°<A<120°,0°<C<120°,又因为a+根号2b=2c,所以sinA+根号2sinB=2sinC,所以sin(1

三角形ABC内角A.B.C所对的分别为a.b.c,已知a=bcosC+csinB

有射影公式:a=bcosC+ccosB已知a=bcosC+csinB综合可以退出sinB=cosB推出tanB=1,故B=45°/225°B是三角形一内角所以B属于(0,π),综上B=45°