三角形abc内接于圆o ad垂直bc于点d点p是弧bc的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:58:35
过O做OD垂直AC交AC于D角AOD=1/2角AOC=角ABH同理得角BOG=1/2角BOF=角BAH又角ABH+角BAH=90度所以角AOD+角BOG=90度角OBG+角BOG=90度所以角AOG=
第一题解法见按第一题的方法可得OG=Rcos∠BDC=Rsin∠ACD同样的AD/sin∠ACD=2R则AD=2*OG原命题得证
(1)∵∠ACB=∠ABF=∠ABC,(圆周角等于弦切角)∴AB=AC(底角相等的三角形是等腰三角形).(2)连接DB,∵∠ADB=∠ABF=∠ABC,∴△ADB∽△ABE.∵AD=4,cos∠ABF
我也是刚刚做到这道题其实只要连接OD,OA=OD,所以等腰三角形,两角相等又D是弧BC中点,根据垂径定理推论,可知OD所在的直径垂直BC,又AE垂直BC于E,有两个直角,所以平行...接下来会了吧~~
相等∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD
关于如图,三角形ABC内接于圆O
连接AH,∵AD⊥BC,∴∠C+∠EAF=90°,∵BE⊥AC,∴∠H+∠EAH=90°,∵∠C=∠H,∴∠EAF=∠EAH,∵AE=AE,∠AEF=∠AEH=90°,∴ΔAEF≌ΔAEH,∴EF=E
延长AO交园边于点K,连接KC并延长交AP于E\x09\x09\x09\x09∵∠B=∠K(两角都是弦AC的圆周角相等)\x09\x09\x09\x09∵∠PDA=∠PAD ( P
证明:连接BE因为AE是直径所以∠ABE=90°因为AD⊥BC所以∠ADC=90°因为∠BAE+∠E=90°,∠CAD+∠C=90°∠E=∠C(同弧所对的圆周角相等)所以∠BAE=∠CAD江苏吴云超祝
西姆松定理,自己看奥赛书都有这个的证明证明一:△ABC外接圆上有点P,且PE⊥AC于E,PF⊥AB于F,PD⊥BC于D,分别连DE、DF.易证P、B、F、D及P、D、C、E和A、B、P、C分别共圆,于
1.如图(图略),∵⊙O中,GH是直径,GH⊥AB,∴弧AH=弧AB,∴∠AOH==(1/2)AOB,∵∠E=∠ACB-∠EDC,又∠ACB=(1/2)AOB=∠AOH,∠EDC=∠ADH,∴∠E=∠
角C等于角E,易证直角三角形ADC与直角三角形ABE相似,AD:AB=AC:AE,AD:6=8:10,AD=4.8
选C理由:设BO的延长线交圆O于H点,交AC于点I.由外接圆性质:三角形的外接圆是由三边的垂直平分线的交线,这一性质可知,AI=CI,弧AH=CH,∠ABH=∠CBH,①:由已知条件很容易得到:三角形
(1)连接DC,过点D做AC的垂线交AC的延长线于F由于AD是角平分线,DE=DF此外角ABD=角DCF,角DEB=角DFA故而三角形BED全等于三角形CFDBE=CF,从而AC+BE=AC+CF=A
1.连接OB,OB=OA=OE=r三角形ABE为直角三角形角EAB+角E=90角E与角C对应同弧,角E=角C角EAB=90-角E=90-角C=角CAD2.三角形ABE相似与三角形ADCAD/AC=AB
菱行.因od垂直ab,oe垂直ac,of垂直bc,所以od=oe=of,故ac互相平分ef而ce=cf,所以四边形cdef是菱行
连结OE∵OA=OE∴∠E=∠OAE∵AE平分∠OAD∴∠E=∠OAE=∠DAE∴OE‖AD∵AD⊥BC∴OE⊥BC∴弧CE=弧BE
菱行.因od垂直ab,oe垂直ac,of垂直bc,所以od=oe=of,故ac互相平分ef而ce=cf,所以四边形cdef是菱行
由S=(1/2)*BC*AD=(1/2)*10*AD=100,求出AD=20;由EH平行于BC,可知三角形AEH与三角形ABC相似,得EH/BC=AH/AC;又三角形AMH与三角形ADC相似,得AM/
解题思路:三角形内接于圆,就是三角形的三个顶点都在圆上。解题过程:三角形内接于圆,就是三角形的三个顶点都在圆上。也就是说,这个圆是三角形的外接圆。最终答案:略