三角形abc中向量ap=2向量pm
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:59:34
重心的性质:对空间任一点O,OG=1/3*(OA+OB+OC).由重心的性质可得AG=1/3*(AB+AC)=1/(3m)*AP+1/(3n)*AQ,因为P、G、Q三点共线,因此1/(3m)+1/(3
三角形ABC中:向量BP=向量AP-AB向量PC=向量AC-AP,而向量BP=2向量PC所以:向量AP-AB=2(向量AC-AP)即:3向量AP=2向量AC+AB所以:3向量APdot3向量AP=(2
BC=AC-ABBM=1/2BC=1/2(AC-AB)AM=AB+BM=1/2(AC+AB)AP+PM=AMPM=1/2AP3/2AP=AM=1/2(AC+AB)AP=1/3(AC+AB)PA=-1/
由已知,2BP=3PC,所以2(AP-AB)=3(AC-AP),2AP-2AB=3AC-3AP,5AP=2AB+3AC,AP=2/5*AB+3/5*AC.
m+n=7/9AP=AR+RP=2/3AB+1/3RC=2/3AB+1/3(RA+AC)=2/3AB+1/3RA+1/3AC=2/3AB+2/9BA+1/3AC=4/9AB+1/3ACm=4/9n=1
PB+PC=2PM=AP∴AP×AP=(0,0,0)同学,AP×AP和AP·AP是不一样的.照你这样问,我的是对的若是你打错了,那就是上面那位对.问要问清楚.
向量AP模长为2,且向量AP乘以向量AC等于2,则向量AC在向量AP上的分量等于1;向量AP乘以向量AB等于1,则向量AB在向量AP上的分量等于1/2;所以(向量AB加向量AC加向量AP)在向量AP上
AP*(PB+PC)=AP*2PM=(2/3)*(2/3)=4/9
设中垂线与BC的交点O则:向量AP=向量AB+向量BP=向量AB+向量BO+向量OP=向量AB+(1/2)向量BC+向量OP所以:向量AP*向量BC=[向量AB+(1/2)向量BC+向量OP]*向量B
三角形abc中向量ab=2向量bc=4角abc=π/3.点p为线段bc中垂线上任意一点,则向量ap,向量bc
你是向量AP=m向量AB+n向量AC吧!向量AP=向量AR+向量RP而向量AR=2/3向量AB向量RP=1/3向量RC=1/3(向量RA+向量AC)=1/3(向量AC-向量AR)=1/3(向量AC-2
向量AB+AC=2AP,AC=AB+BC|AC|^2=AC*AC=(AB+BC)*(AB+BC)=AB*AB+2AB*BC+BC*BC=9+2AB*BC+BC*BC=9+(2AB+BC)*BC=9+2
(1)向量AP+2向量BP+3向量CP=向量0.根据向量的减法可知:向量AP+2向量(AP-AB)+3向量(AP-AC)=向量0.即6AP-2AB-3AC=0,向量AP=1/3AB+1/2AC=1/3
以下字母均为向量AP=AC+CP=AC+(2/3)CR=AC+(2/3)(AR-AC)=(1/3)AC+(2/3)AR=(1/3)AC+(2/3)(2/3)AB=(1/3)AC+(4/9)ABm+n=
以BC为x轴BC中点D与A的连线为y轴正方向建系设△ABC边长为2则A(0,根号3)B(-1,0)C(1,0)设P(x,y)则向量AP向量PB向量PC都能表示出来了再用已知导出x和y再用向量夹角余弦值
考虑到三角形的面积公式S=1/2absinC,引进一种新的运算---向量的外积(叉乘):向量a×b=|a|•|b|•sinα(其中α表示向量a到b的角).向量AP=1/2向量A
如图,设AQ=c, 则c+a=2AR,AR+b=2AP=4c. AR=4c-b故c+a=2(4c-b), 7c=a+2bAP=2c=2
设AP延长线交BC于D,连接BP,则|AB|/|AC|=|BD|/|DC|=2/3===>BD=2/5BC=2/5(AC-AB)AD=AB+BD=AB+2/5BC=AB+2/5(AC-AB)=3/5A
三角形ABC中AP为BC边上的中线,∴向量AP=(AB+AC)/2,BC=AC-AB,∴AP*BC=(AC^2-AB^2)/2=-2,|AB|=3,∴AC^2=-4+9=5,∴|AC|=√5.
过B点做PC的平行线过C点做PB的平行线两条平行线相交于点Q根据平行四边形的性质可知点Q在AM的延长线上,且MQ=PM再根据向量相加的定理可知,PB+PC=PB+BQ=PQAM=1&AP=2PM于是P