三角形ABC中,若对任意t属于R均有ab-tac大于 1 2ab

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:06:51
三角形ABC中,若对任意t属于R均有ab-tac大于 1 2ab
已知在三角形ABC中,三个内角A,B,C的对边分别是a,b,c,若三角形的面积为S,且S=c^2-(a+b)^2 ,求t

正弦定理S=absinC/2余弦定理c^2=a^2+b^2-2abcosC代入2S=(a+b)^2-c^2得absinC=2ab+2abcosCsinC=2+2cosC因为(sinC)^2+(cosC

在三角形ABC中,已知a b c分别是角ABC的对边,若a/b=cosB/cosA,判断三角形ABC形状

a/cosB=b/cosAa/b=cosB/cosA由正弦定理a/sinA=b/sinB所以a/b=sinA/sinB所以cosB/cosA=sinA/sinBsinAcosA=sinBcosB2si

若对任意的t属于R,不等式f(t^2-2t)+f(2t^2-k)<0恒成立,已知f(x)在R上单调递减且为奇函数 求K的

x取任意值就成立则这里x=2t²-k时也成立所以-f(2t²-k)=f[-(2t²-k)]

在三角形ABC中,角A、B、C的对边分别是a、b、c,若向量AB与向量AC的积等于向量BA与向量BC的积且等于k(k属于

由于AB.AC=BA.BC即|AB|*|AC|*cosA=|BA|*|BC|*cosB|AC|*cosA=|BC|*cosB即AC,BC在AB上的射影相等,故|AC|=|BC|.即三角形为等腰三角形.

已知O为三角形ABC内一点,对任意K属于R,恒有|OA-OB-KBC|>=|AC|,则三角形一定是

|OA-OB-KBC|>=|AC|,即|BA-kBC|>=|AC|,如图,上式的意思,是直线BC上,任意一个点与A的连接线段中.AC是最短者.∴AC⊥BC,三角形是直角三角形(∠C=90&

在三角形ABC中,AB=AC,若P是BC边上任意一点,求证BP*CP=AB2-AP2

作AD垂直BC于D由于是等腰三角形,所以BD=DC根据勾股定理:AB2-AD2=BD2AP2-AD2=PD2所以AB2-AP2=AB2-AD2-AP2+AD2=BD2-PD2=(BD+PD)*(BD-

已知:△ABC是任意三角形.

(1)证明:∵点M、P、N分别是AB、BC、CA的中点,∴线段MP、PN是△ABC的中位线,∴MP∥AN,PN∥AM,∴四边形AMPN是平行四边形,∴∠MPN=∠A.(2)∠MP1N+∠MP2N=∠A

求详解.如图在三角形abc中,角b等于30度,角c等于45度,ac等于2,点p是三角形abc三条边上的任意一点,若三角形

ACP4显然是等腰直角三角形,它AC上的高显然大于ACP1的AC上的高即ACP4的面积最大,它的底CP4=2√2,高AP3=√2,所以面积是2

向量三角形形状判断变态题:在已知三角形ABC中任意他t属于R都有|向量BA-t 向量BC|大于等于|向量AC|成立,则三

|BA-tBC|>=|AC|当且仅当t=-1时,|BA+CB|=|CA|又因为|BA-tBC|>=|AC|(同平方)得|BA|^2-2|BA||t||BC|cosabc+|t|^2|BC|^2>=|A

在三角形ABC中国,若对任意γ属于R,都有|AB向量+γAC向量|≥|BC向量|.则三角形ABC一定为直角三角形.为什么

法一:用几何意义做.|向量AB+γ*向量AC|=|向量BA+(-γ)*向量AC|=|由B指向线AC上一点的向量|,其最小值为B到AC的距离.再结合题设知B到AC距离≥|向量BC|,因而B到AC距离=|

设o为三角形abc内一点,若任意k属于实数……求高手解,

直角三角形,应为oa-ob=ba,oa-oc=ca,ba-kbc的模长等同于a向bc边所在的直线上任意一点的连结而成的向量的模长,最短长度即是a向bc边的高,而这个最短长度都不大于ca的长度,可见ca

在三角形ABC中,角A、B、C的对边分别为a、b、c,若向量AB乘以向量AC=向量BA乘以向量BC=k k属于R

(1)根据题意,可以得到:c*b*cosA=c*a*cosB,然后得到b*cosA=a*cosB,又b/sinB=a/sinA(正弦定理),两式相处,消去b、a,得到:cosA*sinB=sinA*c

若关于x的不等式x^2+(1/2)x+(1/2)^n>=0对任意n属于正整数在x属于(-无穷,t]恒成立 求t的取值范围

x^2+(1/2)x-(1/2)^n>=0x^2+x/2>=(1/2)^n恒成立,则大于它的最大值:(1/2)^n的最大值是n=1,(1/2)^n=1/2.所以:x^2+x/2>=1/22x^2+x-

在△ABC中,若对任意的实数m,都有|向量BA-m*向量BC|≥|向量AC|,则△ABC是什么三角形

不等式两端同时平方BA²-2m×BA×BC×cosB+BC²≥AC²=BA²-2×BA×BC×cosB+BC²整理得2×BA×BC(1-m)cosB≥

怎么证明 任意三角形ABC中,点D是三角形内任意一点,求证AB+AC大于BD+CD?

延长BD交AC于M   因为AB+AM>BE       BM=BD+DM &nbs