三角形ABC中,三个角所对的边 tanA=1 2,sinB=√10 10 魔方格

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 23:04:35
三角形ABC中,三个角所对的边 tanA=1 2,sinB=√10 10 魔方格
在三角形ABC中,角A,B,C所对的边分别是abc,且cosA=4/5

然后呢.再问:题被吞了?!1.sin²B+C/2+cos²2A2.若b=2,ABC的面积S=3,求a再问:1.求sin²B+C/2+cos2A2.若b=2,三角形ABC的

三角形ABC中,三个内角ABC的对边分别为abc,且cosC/cosB=(2sinA-sinC)/sinB

sinBcosC=2sinAcosB-cosBsinCsin(B+C)=2sinAcosBsinA=2sinAcosBcosB=1/2B=60°49=a²+c²-2accos60°

三角形ABC中角ABC分别所对的边abc,根号3倍的b减c的差乘以cosA,等于a倍的cosC,

根号3倍的b减c的差乘以cosA=a倍的cosC即√3bcosA=ccosA+acosC由正弦定理,化为角的形式√3sinBcosA=sinCcosA+sinAcosC=sin(A+C)=sin(18

三角形ABC中,三个内角ABC所对的边分别为abc若B=60度,a=(根号3-1)c

1.A+C=120°,C=120°-A由正弦定理a/sinA=c/sinCa=(3^(1/2)-1)csinA=(3^(1/2)-1)sinC(3^(1/2)+1)sinA=2sin(120°-A)=

三角形ABC中 abc分别是角ABC所对的边 且acosB+bcosA=2 求c边

过顶点C作CD垂直AB于D,acosB=BDbcosA=ACAC+BD=AB=c所以c边的长就是2

在三角形中,角ABC所对的边分别为abc已知tan(A+B)=2求sinC

tan(A+B)=2因为C=180º-(A+B)所以,tanC=-tan(A+B)tanC=-2sinC=-2cosC=-2√(1-sin²C)sin²C=4-4sin&

在三角形ABC中,三个内角所对的边分别是a,b,c.已知2B=A+C,a+√2b=2c,求角C的正弦值.

B=60度,用正弦定理的a=sinA,b=二分之根号三,c=sinC!代里去解就好了

正弦定理解三角形在三角形ABC中,角A,B,C所对边分别是abc.且asinB-bcosC=ccosB问三角形的形状

边角替换,把a,b,c替换成sinA,sinB,sinCsinAsinB=sinBcosC+sinCcosB=sin(B+C)=sinAsinAsinB-sinA=0sinA(sinB-1)=0因为s

三角形中角ABC所对的边分别是abc.且a=1.c=根号2.cosC=3/4.求sinA和三角形面积

作BD⊥AC于D,(D在线段AC上)cosC=DC/BC∴DC=3/4,BD=√7/4sinA=BD/AB=√14/8AD=5/4AC=2S△ABC=1/2*AC*BD=√7/4【用余弦公式cosC=

在三角形ABC中,AB=2厘米,角B=30度,试讨论AC边的大小对三角形ABC形状所...

1、如果AC=2厘米,则∠C=30°,三角形为等腰三角形2、如果AC=√(2²-1)=√3,则为直角三角形

在三角形ABC中abc分别是角ABC所对的边,已知A=60度b=1,这个三角形的面积为根号3,求三角形ABC外接圆的直径

设外接圆直径为R,如上图,a=Rsin∠CDB    而A=∠CDB,故a=RsinA    △ABC的面积S=(1/2

三角形ABC中,三个内角ABC所对的边分别为abc若B=60度,c=(根号3-1)a

解∵∠B=60°∴A+C=120°,C=120°-A由正弦定理a/sinA=c/sinCc=(√3-1)asinC=(√3-1)sinA(√3+1)sinC=2sin(120°-C)=√3cosC+s

在三角形ABC中,角A,B,C所对的边为a,b,c,

余弦定理:cosB=(a^2+c^2-b^2)/2ac=1/2a^2+c^2-1=ac令t=a+ct^2=a^2+c^2+2ac=1+3ac(a+c)^2>=4acac

高中三角函数=0-在三角形ABC中,角ABC所对的边分别为abc.

1.由题意得(a+c)/b=pa+c=5/4a^2+2ac+c^2=25/16ac=1/4b^2ac=1/4a^2-2ac+c^2=25/16-4ac(a-c)^2=9/16a-c=3/4a=1c=1

在三角形ABC中,三个内角A,B,C所对的边为a,b,c,已知2B=A+C,A

因为2B=A+C,A+B+C=180°,所以B=60°,A+C=120°,所以0°<A<120°,0°<C<120°,又因为a+根号2b=2c,所以sinA+根号2sinB=2sinC,所以sin(1

在三角形ABC中,a.b.c分别是角A.B.C所对的边的长,S是三角形ABC的面积.

a²-(b-c)²=a²-b²+2bc-c²=2bc-2bccosAS=1/2bcsinA∴2bc-2bccosA=1/2bcsinA4-4cosA=