(4A)的转置
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:48:45
因为r(AA^T)
tr(AB)=tr(BA)====>tr(A'AB)=tr(A'BA)第一等式是公式,很多搞数学的已经证明绝对正确!
A^T指A的转置,要求一个矩阵的特征值,先求特征多项式,即|λE-A|=0A的转置的特征多项式|λE-A^T|=0,因(λE-A)^T=(λE)^T-A^T=λE-A^T所以|λE-A|=|(λE-A
A的特征多项式为|A-λE|=|A的转置-λE|,所以A与A的转置有相同特征值
A可逆,∴存在B使得AB=BA=I,(AB)'=B'A'=(BA)'=A'B'=I'=I,∴B'为A'的逆矩阵.
若Ax=0,则A'Ax=0;若A'Ax=0,则x'A'Ax=0,即(Ax)'Ax=0,故Ax=0.从而方程Ax=0跟方程A'Ax=0通解.所以r(A'A)=r(A);同理有r(AA')=r(A').且
A=(aij)AA^T的主对角线上的元素为::dii=[ai1]^2+[ai2]^2+……+[ain]^2=0得aij=0于是A=0
(a+1)(a+2)(a+3)(a+4)=(a+1)(a+4)(a+2)(a+3)=(a^2+5a+4)(a^2+5a+6)=[(a^2+5a)+4][(a^2+5a)+6]=(a^2+5a)^2+1
A是实矩阵就可以实矩阵是指A中元素都是实数不一定是对称矩阵.此时r(A^TA)=r(A)证明方法是用齐次线性方程组AX=0与A^TAX=0同解.A不一定是方阵,不一定可逆再问:如果换作A的伴随乘以A,
由A*=|A|A^-1得(A*)'=|A|(A^-1)'对A'也有(A')*=|A'|(A')^-1=|A|(A')^-1而(A^-1)'=(A')^-1--这个也是性质,易证所以(A*)'=(A')
因为r(AA^T)≤r(A)≤3,而AA^T是4阶方阵,所以|AA^T|=0..
满足A^H*A=A*A^H的叫正规阵,Hermite阵只是一种特殊的正规阵,反Hermite阵和酉阵也满足这种性质.
用最基本的方法:设A==(aij)m*n分块A==(A1,A2,...,An),Aj==(a1j,a2j,...,amj)(j==1,2,...n)则T(A)==T(T(A1),T(A2),...,T
(λE-A)′=λE-A′,|(λE-A)′|=|λE-A|∴|λE-A|=|λE-A′|,A与A′特征多项式相同,所以特征值也一样.
|AA^T|=|A||A^T|=|A||A|=|A|^2
设A是m×n的矩阵.可以通过证明Ax=0和A'Ax=0两个n元齐次方程同解证得r(A'A)=r(A)1、Ax=0肯定是A'Ax=0的解,好理解.2、A'Ax=0→x'A'Ax=0→(Ax)'Ax=0→
设A可对角化为B,这意味着存在相似变换矩阵S使得B=S[-1]AS所以S'A'S'[-1]=B'=B=S[-1]AS于是A'=S'[-1]S[-1]ASS'=(SS')[-1]ASS'即存在相似变换矩
(a)=r(a')=n-1矩阵的秩与其转置矩阵的秩相等.
|AA^T|=|A||A^T|=|A||A|=|A|^2再问:不是AAT的行列式,就是A乘以AT,我问的是为什么AAT=|A|^2再答:这不会.AA^T是一个矩阵,|A|^2是一个数肯定是AA^T的行