三棱锥S-ABC的所有定点都在球O的表面上,SA⊥平面ABC,AB
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 13:24:51
解题思路:考查了球及其内接多面体的性质,以及棱锥的体积。解题过程:最终答案:略
由SA=SB=SC故有S在底面ABC的投影为球心O,O为ABC的重心,所以可知道OA=1,而OA=根号3/3AB,可得AB长,而且高SO=1,所以体积就可以求出来等于根号3/4
如图(S1表示S'),S'E=S'F=S'G(S'到三个侧面距离相等)可得出SE=SF=SGS'P=S'Q=S'R  
依题意OC=1/2*SC=1∴O-ABC中,侧棱OA=OB=OC=1,底面为正三角形,边长为1∴O-ABC为正四面体ΔABC的外接圆半径r=√3/3∴O到底面ABC的距离h=√(1-3/9)=√6/3
因为点P(2,3)在圆(x-1)²+y²=10上,所以相切的直线只有一条,且与连接点P的半径垂直连接点P和圆心(1,0),求得该直线的斜率为3,因为直线ax-y+1=0也垂直于过点
如图为两个相对的边长为一的正四面体,高为(2√6)/3,这也是三棱锥S-ABC的高,△ABC面积为√3/4,则三棱锥S-ABC的体积为[(2√6)/3]*(√3/4)/3=√2/6
已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为O的直径,且SC=2,则此棱锥的体积为(√2/6)
侧面与底面所成的二面角都相等,并且顶点在底面的射影在底面三角形内则底面三条高的垂足、三棱锥的顶点和顶点在底面的射影这三者构成的3个三角形是全等三角形,所以顶点在底面的射影到底面三边的距离相等,所以是内
你说的是这个回答吧利用正弦定理,设三角形ABC外接圆半径为r则2r=1/sin60°=2/√3∴ r=√3/3设球的半径为R∴ O到平面ABC的距离d=√(R²-r
你先画出图象来外心就是外接圆的圆心将P点与那个射影点O连接起来在连接OaObOc这样就有3个直角三角形半径和垂直距离都相等由勾股得Pb=Pa=PC
设垂心为G.则PG垂直平面ABC所以PG垂直AB,BC,AC连接AG,BG,CG因为G为三角形ABC垂心,所以AG垂直BC,BG垂直AC,CG垂直AB所以AB垂直平面PCG,BC垂直平面PAG,AC垂
∵三棱锥S-ABC的顶点S在底面的射影H是△ABC的垂心,∴三棱锥的三条相对的棱两两垂直,反之,若三棱锥的三条相对的棱两两垂直,则有三棱锥任意一个顶点在对面的射影是对面三角形的垂心,过顶点A向平面SB
∵四面体S-ABC中,共顶点S的三条棱两两互相垂直,且SA=SB=2,SC=22,故四面体的外接球即为以SA,SB,SC为长宽高的长方体的外接球,可求得此长方体的体对角线长为4,则球半径R=2弦BC=
∵△ABC是边长为1的正三角形,∴△ABC的外接圆的半径r=33∵点O到面ABC的距离d=R2-r2=63,SC为球O的直径∴点S到面ABC的距离为2d=263∴棱锥的体积为V=13S△ABC×2d=
SA、SB、SC两两垂直,可把SA、SB、SC看成一个长方体的三条边,把长方体补全,由对称性长方体的8个顶点都在外接球上,球直径是长方体角线的长度,由勾股定理有直径d^2=4^2+2^2+2^2=24
S在面abc内的投影是正三角形的中心O,做辅助线SO.AO.BO.CO用三垂线定理即可证明.
如图,AE=√7,设外接球半径为R则 (√7-R)²+1²=R² R=4/√7球的表面积=
cos角SCD=SD^2+CD^2-SC^2/2SD·DC?此式错误!cos∠SCD=(SC^2+CD^2-SD^2)/(2SC·DC)=(4+3/4-11/4)/2√3=√3/3sin∠SCD=√6
画出图,将三棱锥补成正方体,三棱锥的外接球就是正方体的外接球所以外接球直径=正方体体对角线长=根号3R=根号3/2S=4piR^2=3pi
对的,答案就是7/8.解释:这是一条考察几何概率的题目,V(三棱锥)=S(底面积)*h(高);由原题可知:V(S-ABC)=S(ABC)*H;然而“在正三棱锥内任取一点P,使得V(P-ABC)