三棱锥S-ABC的所有定点都在球O的表面上,SA⊥平面ABC,AB

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 13:24:51
三棱锥S-ABC的所有定点都在球O的表面上,SA⊥平面ABC,AB
已知三棱锥S—ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径且SC=1,这次三棱锥的体

解题思路:考查了球及其内接多面体的性质,以及棱锥的体积。解题过程:最终答案:略

已知三棱锥S-ABC的四个顶点都在半径为1的球面上,必有重谢

由SA=SB=SC故有S在底面ABC的投影为球心O,O为ABC的重心,所以可知道OA=1,而OA=根号3/3AB,可得AB长,而且高SO=1,所以体积就可以求出来等于根号3/4

三棱锥S-ABC中,S'是S在底面ABC内的射影.若S'到三个侧面距离相等,求证:S’是底面三角形的内心

如图(S1表示S'),S'E=S'F=S'G(S'到三个侧面距离相等)可得出SE=SF=SGS'P=S'Q=S'R  

三棱锥s-abc的所有顶点都在球O的球面上,三角形abc为边长为一的正三角形,sc为球o 的直径sc=2,求三棱锥V

依题意OC=1/2*SC=1∴O-ABC中,侧棱OA=OB=OC=1,底面为正三角形,边长为1∴O-ABC为正四面体ΔABC的外接圆半径r=√3/3∴O到底面ABC的距离h=√(1-3/9)=√6/3

已知各定点都在同一球面上 高为4的三棱锥S-ABC中,SA⊥平面ABC 角BAC=90° AB=AC 体积为8/3 求这

因为点P(2,3)在圆(x-1)²+y²=10上,所以相切的直线只有一条,且与连接点P的半径垂直连接点P和圆心(1,0),求得该直线的斜率为3,因为直线ax-y+1=0也垂直于过点

已知三棱锥S-ABC的所有顶点都在球0的球面上,△ABC是边长为1的正正三角形,SC为球0的直径,且SC=2,则此棱锥的

如图为两个相对的边长为一的正四面体,高为(2√6)/3,这也是三棱锥S-ABC的高,△ABC面积为√3/4,则三棱锥S-ABC的体积为[(2√6)/3]*(√3/4)/3=√2/6

已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为O的直径,且SC=2,则此棱锥的体积

已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为O的直径,且SC=2,则此棱锥的体积为(√2/6)

6、如果三棱锥S-ABC的底面是不等边三角形,侧面与底面所成的二面角都相等,且顶点S在底面的射影O在△ABC内,那么O是

侧面与底面所成的二面角都相等,并且顶点在底面的射影在底面三角形内则底面三条高的垂足、三棱锥的顶点和顶点在底面的射影这三者构成的3个三角形是全等三角形,所以顶点在底面的射影到底面三边的距离相等,所以是内

已知三棱锥S-ABC的所有顶点都在以O为球心的球面上,三角形ABC是以边长为1的正三角形,SC为球O的直径,若三棱锥S-

你说的是这个回答吧利用正弦定理,设三角形ABC外接圆半径为r则2r=1/sin60°=2/√3∴ r=√3/3设球的半径为R∴ O到平面ABC的距离d=√(R²-r

急·····在三棱锥p-abc中,定点p在平面abc内的射影是三角形abc的外心,求证:pa=pb=pc

你先画出图象来外心就是外接圆的圆心将P点与那个射影点O连接起来在连接OaObOc这样就有3个直角三角形半径和垂直距离都相等由勾股得Pb=Pa=PC

已知在三棱锥p-ABC中,定点p在底面ABC内的射影为三角形ABC的垂心”

设垂心为G.则PG垂直平面ABC所以PG垂直AB,BC,AC连接AG,BG,CG因为G为三角形ABC垂心,所以AG垂直BC,BG垂直AC,CG垂直AB所以AB垂直平面PCG,BC垂直平面PAG,AC垂

若三棱锥S-ABC的顶点S在底面上的射影H在△ABC的内部,且是△ABC的垂心,则(  )

∵三棱锥S-ABC的顶点S在底面的射影H是△ABC的垂心,∴三棱锥的三条相对的棱两两垂直,反之,若三棱锥的三条相对的棱两两垂直,则有三棱锥任意一个顶点在对面的射影是对面三角形的垂心,过顶点A向平面SB

三棱锥S-ABC三条侧棱两两垂直,且SA=SB=2,SC=22.若该三棱锥的四个顶点都在球O的表面上,则B、C间的球面距

∵四面体S-ABC中,共顶点S的三条棱两两互相垂直,且SA=SB=2,SC=22,故四面体的外接球即为以SA,SB,SC为长宽高的长方体的外接球,可求得此长方体的体对角线长为4,则球半径R=2弦BC=

已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体

∵△ABC是边长为1的正三角形,∴△ABC的外接圆的半径r=33∵点O到面ABC的距离d=R2-r2=63,SC为球O的直径∴点S到面ABC的距离为2d=263∴棱锥的体积为V=13S△ABC×2d=

在三棱锥S-ABC中,侧棱SA ,SB,SC两两垂直且长度为a,则三棱锥S-ABC中的外接球的表面面积为

SA、SB、SC两两垂直,可把SA、SB、SC看成一个长方体的三条边,把长方体补全,由对称性长方体的8个顶点都在外接球上,球直径是长方体角线的长度,由勾股定理有直径d^2=4^2+2^2+2^2=24

在三棱锥s-abc中,三角形abc是边长为4的正三角形,sa=sc,证明ac⊥sb

S在面abc内的投影是正三角形的中心O,做辅助线SO.AO.BO.CO用三垂线定理即可证明.

所有棱长均为2的正三棱柱的所有定点都在一个球面上则球的表面积为

如图,AE=√7,设外接球半径为R则  (√7-R)²+1²=R²   R=4/√7球的表面积=

已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,求锥体积

cos角SCD=SD^2+CD^2-SC^2/2SD·DC?此式错误!cos∠SCD=(SC^2+CD^2-SD^2)/(2SC·DC)=(4+3/4-11/4)/2√3=√3/3sin∠SCD=√6

一个三棱锥S-ABC的三条侧棱SA、SB、SC两两互相垂直,且长度均为1,已知该三棱锥的四个顶点都在同一个球面上,则这个

画出图,将三棱锥补成正方体,三棱锥的外接球就是正方体的外接球所以外接球直径=正方体体对角线长=根号3R=根号3/2S=4piR^2=3pi

已知正三棱锥S-ABC的底面边长为4,高为3,在正三棱锥内任取一点P,

对的,答案就是7/8.解释:这是一条考察几何概率的题目,V(三棱锥)=S(底面积)*h(高);由原题可知:V(S-ABC)=S(ABC)*H;然而“在正三棱锥内任取一点P,使得V(P-ABC)