三棱锥P-ABC三条侧棱两两垂直,PH垂直平面ABC于H
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:00:07
三棱锥体积=1/6*PA*PB*PC=1/6PB*PC
取AC中点D,连结PD,DB.因为PA=PC,所以三角形PAC为等腰三角形,D为AC中点,所以PD⊥AC.又因面PAC⊥面ACB,面PAC∩面ACB=ACPD在面PAC内,PD⊥AC所以PD⊥面ACB
三棱锥P-ABC的三条侧棱PA、PB、PC两两互相垂直,它的外接球就是它扩展为长方体的外接球,求出长方体的对角线的长:32+ 42+52=52所以球的直径是52,半径长R=522球的表面积S
貌似你漏写了BA=BC这个条件
三分之根号六a此题关键在于顶点在底面上的投影与底面得人点的连线长是底面高的三分之二
/>正三角形的高是2*(√3/2)=√3底面的面积S=2*√3*(1/2)=√3所以,体积=S*PA/3=√3*3/3=√3
由二面角的平面角定义又PA|ABC得PA|AB,PA|AC.则角BAC为B-PA-C的平面角,又PAB|PAC,故BAC直角.再问:平面PAC⊥平面PAB怎么来的?再答:设A平面PBC内射影为M,即A
三棱锥P-ABC中,PA⊥底面ABC,PA=3,底面ABC是边长为2的正三角形,所以底面面积为:3;三棱锥的体积为:13×3×3=3故答案为:3
由AB=BC,ABC为RT三角形,所以AB⊥BC,又PA⊥面ABC所以pB⊥BC(三垂线定理),pA=4=2AB,所以AB=2,Ac=2√2,pB=2√5,pC=2√6,Vp-BCD=VD-PBC,即
以PA,PB,PC分别为长,宽,高可作出一个长方体,所求三棱锥的体积是长方体体积的1/6,体积为4;三棱锥的外接球的直径是长方体的体对角线,所以半径为29的算术平方根的一半.
作PD,PE,PF分别垂直AB,BC,AC于D,E,F,连接CD,AE,BF,;由于PAPBPC两两垂直,故可知PA⊥平面PBC;而PE⊥BC,由三垂线定理得AE⊥BC;同理,BF⊥AC;CD⊥AB;
∵PA⊥平面ABC,PB=PC由射影定理得AB=AC=4∵PA⊥平面ABC∴PA⊥AC在Rt△PAC中,得PC=5则PB=BC=5取BC中点D,连AD在等腰△ABC中,底边上的高AD=√39/2∴V=
设垂心为G.则PG垂直平面ABC所以PG垂直AB,BC,AC连接AG,BG,CG因为G为三角形ABC垂心,所以AG垂直BC,BG垂直AC,CG垂直AB所以AB垂直平面PCG,BC垂直平面PAG,AC垂
解题思路:利用均值不等式计算。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/re
AB=√(a^2+b^2),BC=√(b^2+c^2),CA=√(c^2+a^2)则S△ABC=√{[(√(a^2+b^2)+√(b^2+c^2)+√(c^2+a^2)]/2*[(-√(a^2+b^2
四个,为三角形PAB,PAC,ABC,CBP
取PC的中点O,连结OA、OB∵∠PAC=90°,∴OA=OP=OC∵∠CBP=90°,∴OB=OP=OC∴OA=OP=OB=OC∴P、A、B、C在同一个球面上
先画出一个三棱锥过P做BC边高PD过A做PD边高AH先求PBC底面对应的高AHPH=PA*1/2*√3/2=√3/4*aAH^2=PA^2-PH^2=a^2-3/16a^2=13/16a^2AH=√1
对的,答案就是7/8.解释:这是一条考察几何概率的题目,V(三棱锥)=S(底面积)*h(高);由原题可知:V(S-ABC)=S(ABC)*H;然而“在正三棱锥内任取一点P,使得V(P-ABC)
三棱锥体积V=1/3*底面积*高这个题你把它竖过来看不就是一个三角形做底另外一条边做高么所以就是1/2*1/3*2*3*4=4