(3 x 1-x 1)÷x^2 4x 4 x 1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:15:47
(3 x 1-x 1)÷x^2 4x 4 x 1
matlab习题,解下列方程组x1+x2+x3+x4=02x1+3x2-x3-x4=23x1+2x2+x3+x4=53x

a=[1,1,1,1;2,3,-1,-1;3,2,1,1;3,6,-1,-1];>>b=[0;2;5;4];>>x=inv(a)*bx=0.61.3-2.2518e+162.2518e+16再问:我怎

线性方程组 线性方程组1x1+x2 -2x4=-64x1-x2-x3-x4=13x1-x2-x3 =3方程组2X1+MX

两个方程组同解的充分必要条件是行向量组等价设方程组1,2的增广矩阵分别为A1,A2考虑分块矩阵H=(A1;A2)--上下放置则r(A1)=r(H)=r(A2)H=110-2-64-1-1-113-1-

y x1 x2 x3 x4

x=[ones(13,1),x1,x2,x3,x4];[b,bint,r,rint,stats]=regress(y,x);b,bint,stats

证明|X1+X2+X3+X4+...+Xn+X|>=|X|-(|X1|+|X2|+...+|Xn|)

因为|(|a|-|b|)|=(|x|-|x1|+|x2|+...+|xn|).

已知数据X1,X2,X3,X4,X5的平均数是X拔,则一组新数据X1+1,X2+2,X3+3,X4+4,X5+5的平均数

X拔*5=(X1+X2+X3+X4+X5)=>X1+1+X2+2+X3+3+X4+4+X5+5=X拔*5+15故新平均数是(X拔*5+15)/5=X拔+3

用列主元Gauss消元法解线性方程组{-x2-x3+x4=0,x1-x2+x3-3x4=1,2x1-2x2-4x3+6x

第二个方程减去第四个方程得x2+3x3-4x4=2然后再加上第一个方程得2x3-3x4=2(1)(消去了x1)第三个方程减去2倍第四个方程得2x2+4x3-4x4=1然后加上2倍第一个方程得2x3-2

求齐次方程组的的一般解(x1+x2+x3+x4+x5=0,3x1+2x2+x3+x4-3x5=0,x1+2x3+2x4+

先将其写成矩阵的形式,然后化简成阶梯形,可知其有两个基础解系,化简结果第一行(1.0.0.-1.-5)第二行(0.1.0.2.6)第三行(0.0.6.0.0)第四行全是零,得基础解系是(1.-2.0.

求齐次线性方程组x1+x2+2x3-x4=0 ,-x1-3x3+2x4=0 ,2x1+x2+5x3-3x4=0的一般解

基础解系:η1=﹛x1=-1,x2=0,x3=1,x4=1﹜η2=﹛x1=-3,x2=1,x3=1,x4=0﹜通解为:k1η1+k2η2

求齐次线性方程组X1+X2+2X2-X4=0,-X1-3X3+2X4=0,2X1+X2+5X3-3X4=0的一般解.

X1+X2+2X2-X4=0打错,应该是X1+X2+2X3-X4=0┏112-1┓┃-10-32┃┗215-3┛→﹙行初等变换﹚→┏103-2┓┃01-11┃┗0000┛通解﹛x1,x2,x3,x4﹜

齐次线性方程组{X1+X2+3X3+X4=0;2X1-X2+X3-3X4=0;X1+X3-X4=0}的基础解系

系数矩阵是11312-11-3101-1进行初等行变换后是100-201000011则x1-2x4=0,即x1=2x4x2=0x3+x4=0,即x3=-x4基础解系为(2,0,-1,1)

求齐次线性方程组 x1+x2+2x3-x4=0 -x1-3x3+2x4=0 2x1+x2+5x3-3x4=0 的一般解.

解:A=112-1-10-32215-3r2+r1,r3-2r1112-101-110-11-1r1-r2,r3+r2103-201-110000方程组的一般解为:c1(-3,1,1,0)^T+c2(

求齐次线性方程组 X1+x2+2X3-X4=0 -X1 -3x3+2x4=0 2X1+X2+5X3-3X4=0的一般解,

看这里:http://zhidao.baidu.com/question/363570655.html

求线性方程组一般解2x1+x^2-x3+x4=13x1-2x^3+x3-3x4=4x1+4x^2-3x3+5x4=-2

增广矩阵=21-1113-21-3414-35-2r2-r1-r3,r1-2r30-75-950-75-9514-35-2r2-r1,r1*(-1/7),r3-4r101-5/79/7-5/70000

求非齐次线性方程组:2x1-x2+4x3-3x4=-4;x1+x3-x4=-3;3x1+x2+x3=1;7x1+7x3-

这里的自由未知量是x3取x3=0,代入等价方程组得一个特解:(3,-8,0,6)^T对应的齐次线性方程组的等价方程为x1=-x3;x2=2x3;x4=0即令等式右边的常数都为0得到的取x3=1得基础解

X1-X2+X4=2X1-2X2+X3+4X4=32X1-3X2+X3+5X4=X+2在有解的情况下求方程当λ为几何时,

x1-x2+x4=2x1-2x2+x3+4x4=3两式相加得2x1-3x2+x3+5x4=5因为同时2x1-3x2+x3+5x4=λ+2两个方程的左边相等,要使方程有解,则方程的右边也相等5=λ+2,

感激不尽求线性方程组基础解系x1+x2+3x4-x5=0x1-x2+2x3-x4=04x1-2x2+6x3+3x4-4x

系数矩阵A=[1103-1][1-12-10][4-263-4][24-24-7]行初等变换为[1103-1][0-22-41][0-66-90][02-2-2-5]行初等变换为[1103-1][02

x1+x2+2x3-x4=0 求其次线性方程组 2X1+3X2+X3-4X4=0 的基础解系及通解 5X1+6X2+7X

增广矩阵=112-1231-4567-7r2-2r1,r3-5r1112-101-3-201-3-2r1-r2,r3-r2105101-3-20000基础解系为:a1=(-5,3,1,0)',a2=(

(9.1X4.8x7.5)/(2.5X1.3X1.6) 68.3-(24.2-11.7) 0.125/(3.6/80)x

第一题约分7.5和2.5,4.8和1.6分子约分剩余9再和分母剩余的3约掉,最后9.1x3第二题把括号拆开68.3+11.7-24.2第三题3.6和0.9约剩4,再和80约,最后是125X20是这个意

已知x1,x2,x3,x4成等比数列,且x1,x4是方程2x²+3x-1=0的两根,则x2+x3=

x1+x4=2x1+3dx2+x3=2x1+3dx2+x3=x1+x4x1,x4是方程2x²+3x-1=0的两根,由韦达定理得x1+x4=-3/2x2+x3=-3/2

1 总体X~N(2,4),X1,X2,X3,X4为样本,则(X1+X2+X3+X4)/4~( )

因为正态分布具有再生性,就是由这些样本经过变形组成的样本空间,仍然服从正态分布N(2,4),则E(X)=2,D(X)=4则E[(X1+X2+X3+X4)/4]=1/4[E(X1)+E(X2)+E(X3