(2z-3)÷z的积分 c为从-2到 2的上半圆周
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:29:47
f(z)=(3z+5)/(z^2+2z+4)是区域D={z/z的模小于等于1}上的解析函数,且D的边界C是光滑闭曲线.根据Cauchy积分定理,可知这个复积分为0.
其中第三个等号应用重要积分
因为用完高斯公式后是三重积分,三重积分的积分区域中x²+y²+z²≤1,并不等于1.因此不能用1来代替x²+y²+z².有个很简单的方法记住
设z=x1+y1*i,z'=x2+y2*i,z+2z’为纯虚数得x1=-2x2代入:10z^2+5z’^2=2zz’得:49x^2-10(y1)^2-5(y2)^2+2y1*y2=0,-42x2*y1
解:设Z=x+yi,z'=x-yiz+z'=2xu(x,y)=2x,v(x,y)=0所以积分:(|Z|=1)(z+z')dz=积分;(|z|=1)2xdx+i积分:(|z|=1)2xdyx=cost,
教你五颗星的方法.设z=a+bi,Z=a-bi,(a+bi)*(2+i)=2a-b+(a+2b)i.因为是纯虚数,所以2a-b=0,所以2a=b,所以z=a+2ai又因为z*Z=20.且Z=a-2ai
这题也用不了柯西积分公式啊,用柯西积分公式需要能把被积函数化成一定的形式,本题用和柯西积分公式本质相同的留数定理计算.被积函数只要z=i/2和z=-1两个一级极点,并且它们都在积分圆周|z|=2内部,
因为f(z)=1/(z^2+2z+1)(z^+1)在/z/再问:和我想的一样。不过我有个同学说这题能用留数解出,你确定f(z)在C内没有极点?没有极点还能用留数解?再答:因为在C没无极点,所以留数为零
答案见附图 说明:这是复变函数的环路积分,第一式子的积分是科希定理,可以查阅数学物理方法或复变函数的书籍.
z²+2z+4=0的根为:[-2±√(4-16)]/2=-1±i√3这两个点均不在单位圆内,因此被积函数在单位圆内解析,所以本题积分结果为0希望可以帮到你,如果解决了问题,请点下面的"选为满
Onacomplexplane,ABCisaright-angledtriangleandBACistherightangle;A,B,andCcorrespondtocomplexnumbersof
设z=a+bi原式:根号(a^2+b^2)-i=a-bi+2+3i∴根号a^2+b^2=a+2-1=3-b∴a=3b=4∴z=3+4iz/2+i=2+i再问:根号a^2+16=a+2怎么算再答:两边同
柯西积分公式原式=2πie^z|z=0=2πi希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,
解可设z=x+yi.(x,y∈R)由题设可得:(x-2)²+y²=11(x-3)²+y²=16解得:x=0,y=±√7∴z=(±√7)i
在C内(|z|=2),z=0是f(z)=[ln(1+z)]/z的孤立奇点,但z=-1不是f(z)的孤立奇点,ln(1+z)在z=-1以及小于-1的负实轴上不解析,所以f(z)在z=-1以及小于-1的负
题目打错了吧,f‘(z)怎么会是一个常数,肯定要带点下去才对
T=(x',y',z')=(1,2t,3t^2)所以,三个方向余弦分别为cosα=1/√(1+4t^2+9t^4)cosβ=2t/√(1+4t^2+9t^4)cosγ=3t^2/√(1+4t^2+9t
利用留数定理做,会很简单.留数定理是说如果f(z)在积分区域内存在z1~zn,n个孤立奇点,则∮Cf(z)dz=2πi∑Res(f(z),zi),其中Res(f(z),zi)为f(z)在zi处的洛朗级
令z=re^(iθ),则z共轭=re^(-iθ),dz=rie^(iθ)dθ,|z|=r,所以积分=∮rdθ,这里r=2,所以积分=2∮dθ(积分限0到2π)=4π