一直实数X Y满足X2 25 y2 16=1求Z=4x 5y的最大值和最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 07:40:14
一直实数X Y满足X2 25 y2 16=1求Z=4x 5y的最大值和最小值
已知实数x、y满足xy>0,且8/xy+1/x+1/y=1,

再问:该方法此处计算是错的,应该为,接下来的都不对了再答:那就从那步开始吧x+y=xy-8若x,y大于0xy-8=x+y≥2√xyxy-8≥2√xyxy-2√xy-8≥0(√xy-4)(√xy+2)≥

若实数x,y满足xy>0且x2y=2,则xy+x2的最小值是(  )

xy+x2=xy2+xy2+x2≥33x4y24=3当且仅当xy2=x2时成立所以xy+x2的最小值为3故选A.

已知正实数x,y满足2x+2y+xy=5 则xy的取值范围是什么?

由已知x,y正实数由2x+2y+xy=5得5-xy=2(x+y)≧2*2√(xy)所以xy+4√(xy)-5≤0[√(xy)+5][√(xy)-1]≤00<√(xy)≤1故,0

若实数x、y满足方程x2+y2+3xy=35,则xy的最大值为

x^2+y^2>=2xy5xy再问:?再答:怎么了不对么再问:x^2+y^2>=2xy为什么?再答:(x-y)^2≥0x^2-2xy+y^2≥0x^2+y^2≥2xy这下理解了吧~

若正实数x ,y满足2x+y+6=xy.则xy的最小值.

2x+y+6≥6+2√2xyxy≥6+2√2xy(√xy-√2)^2≥8√xy-√2≥2√2或√xy-√2≤-2√2(不可能)所以xy最小值是(3√2)^2=18-------------------

若正实数x,y满足2x+y+6=xy,则xy的最小值为

xy-6=2x+y≥2√(2xy)令a=√xy则a²-2√2a-6≥0所以a≤-√2,a≥3√2因为√xy>0所以√xy≥3√2xy≥12所以最小值是12

实数xy满足1< x3/y

设xy=(x^3/y)^m*(x^2/y^2)^n=x^(3m+2n)y^(-m-2n)3m+2n=1-m-2n=1m=1,n=-1即有xy=x^3/y*y^2/x^22

已知x y都是实数 且满足x^2+y^2+xy=1/3,求xy的最大值

解由题知求xy的最大值,则x,y必定同号,不妨设x,y同正则由x^2+y^2+xy=1/3得1/3=xy+x²+y²即1/3-xy=x²+y²≥2xy即1/3≥

已知实数x,y满足x^2+y^2=1 求(1-xy)(1+xy)的最大值和最小值

令x=sinay=cosa(1-xy)(1+xy)=1-(xy)^2=1-(sinacosa)^2=1-1/4sin(2a)^2显然0《(sin2a)^2《13/4《1-1/4sin(2a)^2《1即

如果实数x,y满足x2+y2=1,则(1+xy)(1-xy)有(  )

∵x2+y2=1,∴x=sinθ,y=cosθ,∴(1-xy)(1+xy)=1-x2y2=1-(sinθcosθ)2=1-(12sin2θ)2=1-14sin22θ,当sin2θ=0时,1-14sin

若正实数x ,y满足2x+y+6=xy ,则xy的最小值是多少?

∵根号xy≤(x+y)/2∴xy≤(x*2+y*2+2xy)/4当且仅当X=Y取等当x=y时原式可化为3x+6=x*2∴x*2的最小值为3/2

若正实数x,y满足2x+y+6=xy,求xy的最小值.

2x+y+6=xy化简得:Y=(2X+6)/(X-1)X不等于0因为正实数x.所以X>0所以X>1函数Y=(2X+6)/(X-1)是单调递增所以X=2为最小值,Y=10所以XY最小值为XY=20

实数xy满足y>=1 y

答案:5.(用线性规划的知识解决)由y≥1,y≤2x-1作出可行域(∵直线x+y=m不确定,∴可行域暂时不确定,但不影响解题)∵目标函数z=x-y的最小值为-1∴y=x-z截距最大时,z最小,为-1,

若正实数X,Y满足2X加Y加6等于XY,求XY的最小值

2x+y+6=xyy=(2x+6)/(x-1)∵y>0,则x>1xy=(2x²+6x)/(x-1)令t=x-1,t>0xy=[2(t+1)²+6(t+1)]/t=(2t²

若正实数x,y满足2x+y+6=xy,则xy的最小值是?答案是18,

正实数x,y满足2x+y+6=xy∵2x+y≥2√2xy∴2√2xy+6≤xy∴xy-2√2xy-6≥0∴√xy≥3√2或√xy≤-√2﹙舍﹚∴xy≤18则xy的最小值是18.

如果实数x y 满足x2+y2=1,那么(1-xy)(1+xy)的最小值和最大值

观察到sin²θ+cos²θ=1,则可做三角代换令x=sinθ,y=cosθ(1-xy)(1+xy)=1-(xy)²=1-(sinθcosθ)²=1-(sin2

已知实数xy满足x+2y

z=3x+y=13(x+2y)/6+5(x-4y)/6当x=5,y=2时取到,z最大值17

已知实数xy满足x²﹢y²-xy+2x-y+1=0求xy

x²+y²-xy+2x-y+1=[3(x+1)²+(x-2y+1)²]/4=0,由于(x+1)²>=0且(x-2y+1)²>=0,则有x+1

若正实数满足x+4y+5=xy,则xy最大值为多少

求xy的最大值就是求4xy的最大值就是求x.(4y)的最大值.记z=4y,原方程写做x+z+5=(xz)/4.所以xz=4(x+z+5).也就是说,x和z是下面这个方程的根:a^2-b.a+4(b+5

已知实数x,y满足x2+xy+y2=3,则x2-xy+y2的最小值

由x2+xy+y2=3得,x^2+y^2=3-xyx^2+y^2≥2xy得,xy≤1所以x^2-xy+y^2=3-2xy≥1等号成立当且仅当x=y=±1