一楼梯有10级,规定每步只能跨上一级或三级,要登上第10级
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:03:08
假设共1级台阶,则只有1种走法2级,有2种走法3级,有4种走法4级,1+2+4=7种走法5级,2+4+7=13种走法6级,4+7+13=24种走法7级,7+13+24=44种走法
1+8+16+15+12+1=53
从简单情况入手:(1)若有1级台阶,则只有惟一的迈法:a1=1;(2)若有2级台阶,则有两种迈法:一步一级或一步二级,则a2=2;(3)若有3级台阶,则有4种迈法:①一步一级地走,②第一步迈一级而第二
先想极端情况,即5个2级.2与3互质,所以每少3个2级,则增加2个3级.只有这两种情况.所以一共有1+C(4,2)=7种走访
三级台阶的走法有:每次走一级;第一次走一级,第二次走二级;第一次走二级,第二次走一级;一次走三级共四种方法.同样以后的每三级台阶都有四种方法,所以共有4*4*4*4=256
1.没有跨两级的情况:每次跨一级,1种跨法;2.有一次跨两级:需要跨9次,9次中选取一次跨两级,即9选1,有C19=9种情况;3.有两次跨两级:需要8次,8次中选取2次跨两级,即8选2,有C28=28
全21种全11种1个29种2个28*7=5656/2=28种3个27*6*5=210210/(3*2)=35种4个26*5*4*3=360360/(4*3*2)=15种1+1+9+28+35+15=8
89再问:WHY再答:可以分六种类型,走5,6,7,8,9,10次,10次:有1种,9次有:9种,8次有:28种,7次:有35种,六次有:15种,5次有:1种,共89种再问:不明白再答:用排列组合做,
1.每步都是一级有1种2.只有一次跨三级的有C(8,1)3.有两次跨三级的有C(6,2)4.有三次跨三级的有C(4,1)合计:28种
如果用n表示台阶的级数,an表示某人走到第n级台阶时,所有可能不同的走法,容易得到:①当n=1时,显然只要1种跨法,即a1=1.②当n=2时,可以一步一级跨,也可以一步跨二级上楼,因此,共有2种不同的
这题用递推.因为每一步只能上一级或两极,所以上1级楼梯有1种走法,上2级楼梯有2种走法.而上第3级楼梯的前一步,肯定是要上到第2层楼梯或第1层楼梯(因为每一步只能上一级或两极,反推,要上第3层,前一步
第一级:只跨1步,有1种;第二级:(1、1),(2),有2种;第三级:(1、1、1),(1、2),(2、1),有1+2=3种;第四级:(1、1、1、1),(1、1、2),(2、1、1),(2、2),(
f(n)=f(n-1)+f(n-2)+f(n-3)f(1)=1f(2)=2f(3)=4f(4)=7f(5)=13f(6)=24f(7)=44f(8)=81f(9)=149f(10)=274f(11)=
要登上第1级台阶,只有1种不同的走法要登上第2级台阶,共有1+1=2种不同的走法要登上第3级台阶,共有1+2=3种不同的走法要登上第4级台阶,共有2+3=5种不同的走法要登上第5级台阶,共有3+5=8
0次3级1种1次3级7次一级C8(1)=82次3级4次一级C6(2)=153次3级1次一级C4(3)=4共28种
分类计算,以上楼梯步数分为六步,七步……到十二步,之后求不同步数的走法总和.就行了再问:这个要算好久呢,你给我答案我就知道采纳你。再答:我可以给你讲思路,但绝不能直接告诉你答案再问:给我答案吧,我赶集
这是排列组合问题共55种走法走9步:1种走8步:8种走7步:21种走6步:20种走5步:5种如果学过排列组合的话就会明白的
到达第一级台阶:1种走法到达第二级台阶:2种走法到达第三级台阶:2+1=3种走法(因为它包括由第二级台阶到的和第一级台阶到的,下同理)到达第四级台阶:3+2=5种走法……到达第九级台阶:34+21=5
111111这种情况下是1种.11112这种情况下,2插入到4个1中,有5种情况1122这种情况下,4个数排列,排法数为4*3*2*1=24,因为有两个1相同,所以有24/2=12,又因为有两个2相同
1,2,4,7,13,24,44,81,有81种走法