一曲线通过点(1,2) 且在任一点的斜率等于该点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:36:04
y'=dy/dx=2x,则y=x^2+c当x=1时y=2,则2=1+C,C=1.原方程是y=x^2+1.
设曲线为y=f(x),f(x)'=1/xf(x)=∫f(x)'x=lnx+c(x>0)或者f(x)=-ln(-x)+c'(x0(x=0)处是个断点,所以该曲线方程为:f(x)=lnx+1(x>0)
即y'=ydy/dx=ydy/y=dx积分lny=x+C过(0,1)0=0+C所以lny=xy=e^x
即y'=ydy/dx=ydy/y=dx积分ln|y|=x²/2+lnC所以|y|=c*e^(x²/2)代入点c=1所以y=e^(x²/2),x≥0y=-e^(x²
就是f(x)=lnx+2啊,为什么是f(x)=ln/x/+2呢?而且两个答案也没有任何区别.
y'=2x-yy'+y=2x对应齐次方程的特征多项式为:r+1=0r=-1设特解为:y*=ax+b代入原方程后得:a=2b=-2故通解为:y=ce^(-x)+2x-2将y(0)=0代入得:c=2故曲线
设曲线为y=f(x)因为在任一点出的切线斜率等于该店横坐标的倒数,即y'=f'(x)=1/x所以:y=f(x)=∫(1/x)dx=lnx+c(c为常数)f(x)过(e^2,3),于是有3=ln(e^2
答:设曲线函数为y=f(x)依据题意有:斜率k=y'=f'(x)=x^2两边积分得:y=f(x)=(1/3)x^3+C因为:f(x)经过点(-1,2)所以:f(-1)=-1/3+C=2解得:C=7/3
切线的斜率等于2x在任一点(x、y)的切线的斜率等于2x,即导数是2x,则原函数是f(x)=x^2+C过原点,则有f(0)=0+C=0,C=0故函数是f(x)=x^2则y'=2x所以y=x²
依题意y'=1/x所以,y=∫1/xdx=lnx+C又过点(e^2,3)所以,3=2+C解得,C=1于是,曲线方程为y=lnx+1
由题意,y'=1/x^2,且y(1)=-1积分得:y=-1/x+C,代入y(1)=-1得:-1=-1+C,得C=0因此该曲线为y=-1/x
微分方程y'=1/x则y=ln|x|+c由曲线通过点(e^2,3),将该点坐标代入上式,得c=1该曲线的方程为y=ln|x|+1
应该加绝对值,y=ln|x|+1代入题中都満足,按解法也有绝对值.书上的答案不一定全对,毕竟编本书的工作量太大.
结果有问题,应带绝对值的.分析可知,如果带绝对值,曲线分两支,x
y'dy/dx=1/x-->dy=(1/x)dx-->y=ln|x|+c将(e^2,3)代入上式,-->c=1,故所求曲线的方程为y=1+ln|x|
依题意,即有微分方程:y'=2x+y,y(0)=0得y'-y=2x特征根为r=1设特解y*=ax+b,代入方程得:a-ax-b=2x,对比系数:-a=2,a-b=0得a=-2,b=-2故通解为y=Ce
y'=3x-yy'+y=3x两边同乘e^x,e^xy'+e^xy=3xe^x→e^xy'+(e^x)'y=3xe^x→(e^xy)'=3xe^x两边同时积分:e^xy=(3x-1)e^x+c右边积分用
曲线在任一点的切线的斜率等于1+2e2x,说明曲线方程为y=e^2x+x+c(c是一个常数)代入点(0,3),解得c=2因此y=e^2x+x+2
设这曲线的方程为y=f(x),∵该曲线上任一点M(x,y)处的切线的斜率是y′=f′(x),此点与原点的连线的斜率是y/x.又它们互相垂直.∴y′y/x=-1.解此微分方程得y²+x&sup
此点与原点联线的方程为y=x既然该曲线上任一点M(x,y)处的切线垂直于此点与原点联线,就是这条曲线的斜率恒为-1这样的曲线只有可能是一条直线所以这条直线的斜率为-1,过(1,1)即为y=-x+2