一平面简谐波表达式y=Acos[w(t-x u)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:00:52
由图可知波长为20,振幅是0.02,由于波速是5,故周期是4s,故角频率是2π/4=π/2,由于t=3s时x=0在负向位移最大处,且此波沿x轴正向传播,故可知t=0时x=0处质点在原点处且沿y轴正向运
x=acos^3t,y=asin^3t是星形线,它的面积为∫ydx=4*∫asin^3t(acos^3t)'dt,t:π/2→0=-3*a^2∫sin^4t*cos^2tdt=-3a^2∫(sin^4
x/u表示波以u的速度传了x的距离所用的时间,φ表示初始的相位,就是余弦函数的初始的一个角度,wx/u是以u的速度传了x的距离后,产生的相位差,其中w是波的振动频率
采用逆向爬坡法:如果题目给出的条件是P点速度向上,你先假设简谐波不动而是P点运动,P点为了速度向上,就要向左运动,那么简谐波就是向右传播;如果题目给出P点速度向下,你先假设简谐波不动而是P点运动,P点
t=0,x=0.1直接代入即可2/3pai
波动的过程是能量的传播过程.由于波的传播,介质中质点作振动,因此具有动能;与此同时,任何一个小体积元内,都发生压缩或伸张形变(纵波)或切形变(横波),因此具有形变势能在平面简谐波中,质元的动能和势能同
(1)将t=5带入波动方程:位移y=5cos(20-4x)cm.(2)将x=4cm带入波动方程:震动规律是:位移随时间变化的波动方程是:y=5cos(3t-10).(3)波速是波长除以周期,波长是两个
分析:从图示可知,O点在t=0时y=0,过一段极小时间后,y>0,所以可知O点的振动方程是y=A*sin(ωt)周期 T=入/u=4/200=0.02秒ω=2π/T=2π/0.02=100π弧度/秒即
1、在t=1/2时刻,y=4.0×10^-2cos(πt-(π/2))=y=4.0×10^-2cos0º=4.0×10^-2m,该点处于最大位移处,速度为0.2、周期T=2s①若A在前B在后
1)振幅:0.2周期:2π/0.4π=5波长:2π/(0.4π*1/0.08)波速=波长/周期2)即x=0时y=0.2cos[0.4πt+π/2]初相:π/2任一时刻的振动速度:对y=0.2cos[0
这道题可以用旋转矢量法来求首先令两个波的方程中的x=λ/4,得到改点处的振动方程,然后在以振幅为半径,矢量起点为圆心的圆中,规定一个正方向,然后,找出各自振动方程的初相位,画好后,将两个矢量利用平行四
1、把x=-lambda带入,u==Acos[2π(t/T+1)+φ]2、对相同的t,x=2时y达到相同的相位,故波长lambda=2m.走过一个波长,需要的时间为t,pi*100t=2*pi,t=0
波由原点传播到+x点所用时间为t'=x/v+x点在t时刻的振动情况(相位)与原点在(t-t')时刻的振动情况(相位)相同,故y(x,t)=y(0,t-t')=Acosw(t-t')=Acosw(t-x
求振动方程,二次对T求导,代入T再问:没听懂呵呵不是只有振动方程才二次求导吗?这个波动方程怎么转换为振动方程啊?再答:设振动方程的标准式,由波动方程可得点,代入可解振动方程..........
一平面简谐波沿0x轴传播==〉公式方向沿x轴正方向(波的方向可能变,看公式中的符号)原式可化为:y=5cos(8*(t+3x/8)+π/4)对比波的标准表达式ψ=Acos(w(t-x/u)+φ)w=2
这个文档的六七页就是解析,很详细哦!
波长为0.4m;振幅为0.04m,v=λff=v/λ=0.08/0.4=0.2HzT=1/f=5s角频率ω=2πf=0.4π,初相位为-πy=0.04sin(0.4πt-π)或者初相位为πy=0.04
假设时间由t=0经过Δt(Δt很小)后,即t=Δt对质点P,y=Asin5πt=y=Asin5πΔt其中,由于Δt很小且为正值,sin5πΔt>0,所以y的正负与A相同当A>0时,y>0,说明P在t=