一对无限长的均匀带电,沿轴线单位长度的电荷分别为λ1,λ2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 22:27:30
高斯定理,先考虑某一根导线产生的电场以某一根导线为圆心作高为h,半径为2a的圆柱面对称性可以知道电场只能垂直于侧面因此高斯定理:E*2*pi*2a*h=h*λE=λ/(4*pi*a)那么单位长度的令一
设个角度用积分就能算
利用高斯定理,∫Eds=q/ε;取高斯面为高为l,(高与直线平行)半径为r的圆柱,q=λl,∫Eds=E2πrl=λl/ε.;得,E=λ/(2πrε.)qE=mv²/rqλ/(2πmε.)=
使用高斯定理,取一圆柱面,使之轴线与直细棒重合,按高斯定理有电通量Ψ=4πkq=q/ε0,Ψ=∮E·dS=E·2πrh,r为圆柱的底面半径,h为圆柱的高.又因为q=λh,所以E=λ/2πrε0=2kλ
当n相当大时,每一小段都可以看作一个点电荷,其所带电荷量为q=Q/n,由点电荷场强公式可求得每一点电荷在P出的场强为E=k*Q/(nr1^2)=kQ/[n(R^2+r^2)],各小段带电环在P处的场强
积分这个运算涉及两个要素,被积函数和积分区域,这两个缺一不可的.你所说的对场强求和所强调的是被积函数,即被积函数是场强关于r的函数,但是他说“对圆环积分”指的是该积分的积分区域,这个是非常重要的,因为
取一圆柱形高斯面半径为rr>R时∮E•dS=E2πrL=λL/εE=λ/2πrεr<R时∮E•dS=E2πrL=ρπr^2L/εE=ρr/2ελ是导体单位长度的电荷
带点导体球壳的电势和内径无关,它的表面的电势是U=kq/R2,所以球外距离球心r处的场强就是Er=kq/r^2=UR2/r^2
选两柱之间的半径为r处的无限圆筒为高斯面由对称性知电场仅有径向分量E_r取长为L的一段高斯面高斯面面积为2*pi*r*L内部电荷为Q=a*LE*2*pi*r*L=a*L得E=a/(2*pi*r)
真空中无限长的均匀带电直线的电场强度E=λ/2πεox﹢λ在P1处的场强为λ/2πεod方向沿x轴正方向﹣λ在P1处的场强为λ/2πεod方向沿x轴正方向则叠加后Ep1=λ/2πεod+λ/2πεod
棒沿轴线方向以速度v做匀速直线运动时,每秒通过的距离为v米,每秒v米长的橡胶棒上电荷都通过直棒的横截面,每秒内通过横截面的电量Q=q•v,根据电流的定义式I=Qt,t=1s,得到:I=qv.故A正确,
可以采用高斯定理,作一个以直导线为轴心,底面半径为R,高为L的圆柱封闭面,E×2πRL=ρL/ε.所以E=ρ/(2πRε.)
物理书上有无限长的带电导线在线外任意一点产生的场强的公式,自己看吧那个东西实在不好打
外磁场为零,内磁场为B_r=1/2μ_0pw(R^2-r^2),其方方向与角速度方向相同.其中R为圆柱半径,B_r为距离轴线距离为r处的磁场的强度.
题目是正确的么?λ一般用于表示单位长度带电量,且需要知道圆柱的半径R按照题目,根据我的计算,结果是(这里λ仍表示单位面积带电量):(λR/2ε)*(1/sqrt(a^2+R^2)-1/sqrt((a+
先用高斯定理求出电场分布,再积分得到电势.圆柱体内电场pr/2e,外电场pR^2/2re,e这里是真空介电常数.外电势-(pR^2)(lnr)/(2e),内电势[-(pR^2)(lnr)/(2e)]+
匀速直线运动.因为长螺线管中的磁场方向总是沿轴方向的,也就是和电子的运动方向相同或相反,带点粒子不受到磁场力的作用.
电势的高低与圆环带电量的大小有关,B表达式显然与电量Q无关,因此B错误;无论圆环带什么电荷,圆环中心处的电势均不为零,因此x=0时,电势不为零,故D错误;同理x=R处的电势也不为零,故C错误;故只有A
无限长均匀带电圆柱面内外的电场强度分别为E=0,E=a/(2πεr)设有限远r0处的电势为零,则电圆柱面外部距轴线为r的任一点的电势为U=∫Edr(积分限r到r0)=a/(2πε)*ln(r0/r)圆
对于单个圆柱面,内部场强为零,外部场强为E=λ/(2*PI*episilon*r),场强与距离成反比对于本题,最内侧场强为零,中间场强为E=λ1/(2*PI*episilon*r),外部场强为E=(λ