一对无限长共轴直筒圆半径分别为R1R2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 22:25:18
利用高斯定理,先算出E,然后再对Edr积分.可求出空间电势分布.你就给10分,就给你提示提示吧.学过大学物理电磁学电场的高斯定理的话加我qq33372247,否则这个题你解不出来.
可以用数列来解释的.比如一个循环小数为0.3131313131.那么我们就构造一个数列,以0.31为首相,以0.01为公比,然后利用数列求和公式,得到与该循环小数相对应的分数.由于分数都是有理数,所以
请注意审题,题中说了:“两对等位基因位于不同的染色体上.”,所以它们不能都在X染色体上
选C,等位基因的分离是由于同源染色体的分开而分离,发生在减数第一次分裂过程,即初级精母细胞形成次级精母细胞过程中,相同基因的分离是由于姐妹染色单体的分裂的分离,发生在减数第二次分裂过程,即次级精母细胞
取一圆柱形高斯面半径为rr>R时∮E•dS=E2πrL=λL/εE=λ/2πrεr<R时∮E•dS=E2πrL=ρπr^2L/εE=ρr/2ελ是导体单位长度的电荷
选两柱之间的半径为r处的无限圆筒为高斯面由对称性知电场仅有径向分量E_r取长为L的一段高斯面高斯面面积为2*pi*r*L内部电荷为Q=a*LE*2*pi*r*L=a*L得E=a/(2*pi*r)
利用对称性,根据高斯定理计算(1)
利用对称性,根据高斯定理计算(1)
以球心为原点建立球坐标系.设场点据原点的距离为r1对于球外的场点,即r>R时,可直接使用高斯定理求解.ES=P/ε,其中S=4πr^2整理得:E=P/4πεr^22对于球内的点,即r再问:屌,大神,再
用高斯定理做圆柱形高斯面,∮E.dS=E*2πrL=q/ε01,(
设该立方体的边长为a,考虑以点电荷为中心,边长为2a的立方体,根据高斯定律,大立方体的每一个面的电通量是q/6ε,然后由于原来的立方体之中有三个面分别是大立方体三个面的1/4,由对称性可以知道这三个面
35:14=5k:2k两三角形之比得出又周长和为140,那么有7k=140k=20即周长为100和40又面积差为588那么设高h有1/2(35*h)-1/2(14*h)=588h=48那么面积为336
先用高斯定理求出电场分布,再积分得到电势.圆柱体内电场pr/2e,外电场pR^2/2re,e这里是真空介电常数.外电势-(pR^2)(lnr)/(2e),内电势[-(pR^2)(lnr)/(2e)]+
引力势能为E1=-G*M/(R+h)(老师说的,暂且没有推导过程)动能为E2=1/2*mV^2=1/2*m*GM/(R+h)=1/2GMm/(R+h)
无限长均匀带电圆柱面内外的电场强度分别为E=0,E=a/(2πεr)设有限远r0处的电势为零,则电圆柱面外部距轴线为r的任一点的电势为U=∫Edr(积分限r到r0)=a/(2πε)*ln(r0/r)圆
用高斯定理啊因为电荷线密度为G所以圆柱面所带电荷为G*l,而高斯面面积为2∏rG第一种没有电荷所以场强为零第二种E=(q/※)/S(※为真空电容率手机打不出)带进去算一下答案为G/(2∏R1※)第三种
两头无线长的导线在0处产生的磁场一个向上,一个向下,且刚好抵消.所以只需要算出中间那一段弧在o处产生的磁感应强度,B=ΣkI△L/R^2=(2π/3)RIK/R^2=2πIK/3R方向向上其中K=μ/
对于单个圆柱面,内部场强为零,外部场强为E=λ/(2*PI*episilon*r),场强与距离成反比对于本题,最内侧场强为零,中间场强为E=λ1/(2*PI*episilon*r),外部场强为E=(λ
这个题目根据高斯定理做.高斯定理:通过一个任意闭合曲面S的电通量Φ等于该面所包围的所有电荷电量的代数和∑q除以介电常数ε0.与闭合面外的电荷无关.公式表达为Φ=∮EcosθdS=(1/ε0)∑q其中E
这是大物(下)的题.因同轴圆柱体的电流分布具有轴对称性,故圆柱体中各区域的磁感应线都是以圆柱轴线为对称轴的同心圆.在内导体圆柱中作一半径为r、和轴线同心的圆环形闭合回路,回路绕行方向与磁感应线方向相同