(2016 扬州)如图,点A在函数Y=4 X

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 20:49:16
(2016 扬州)如图,点A在函数Y=4 X
如图,点A、B在直线L同侧,点B’是点B关于L的对称点,AB'交于点P.

(1)因为点B‘是点B关于L的对称点,所以直线L是线段BB’的垂直平分线,所以BP=B‘P所以AB’=AP+BP.(2)AQ+BQ大于AP+BP,因为直线L是BB‘的垂直平分线,点Q在BB’上,所以B

如图,在平面直角坐标系中,点C在x的正半轴上,点A在y轴的正半轴上.

1)Sopba=(OP+AB)*OA/2=[(18-2t)+14]*7/2=112-7t(把它看做是一个梯形)SΔoqb=OQ*AB/2=t*14/2=7t2)(112-7t)/216/3,由已知可知

如图,在平面直角坐标系中,存在点A(-3,1),点B(-2,0).

这道题是不是缺条件,既然是求一个四边形面积应该是封闭的再问:没有啊。条件就这些。。再答:我会了答案是1再问:求过程!QAQ再答:连接AA撇交Y轴于点cAO=A撇O=3AA撇=6同理BB撇=4OC=1根

如图长方形ABCD中,点P在边AD上从点A向点D移动.

1)AB,BC,CD,AD线段的长度始终不变,AP,PD,BP,PC线段发生了变化2)三角形BPC的面积始终保持不变,三角形APB,PDC发生了变化3)Y=10-X,0

如图,长方形ABCD中,点P在边AD上从点A向点D移动.

1、dc、ab、bc、ad2、没有三角不变

如图,点a(-2,-6)在反比例函数的图像上,如果点b

1、设反比例函数的解析式为Y=k/x,因为点A(-2,-6)在其图像上,故可求得解析式为Y=12/x.又因为B也在其图像上,故设其坐标为(m,12/m),又知道A点坐标根据点斜式可以表示出通过直线AB

如图,点A在x轴负半轴上,点B在Y轴正半轴上,线段AB长为6

解题思路:直线与圆相切时,构成三角形,由相似求得时间。步骤很细了。解题过程:答案附件中最终答案:略

如图,在平面直角坐标系中,点A为y轴正半轴上的一动点

设A(0,a),a>0,则B(-1/a,a),C(k/a,a)OB的方程:y=[a/(-1/a)]x=-a²x令x=k/a,y=-ka,D(k/a,-ka)反比例函数:y=-k²/

如图,在平面直角坐标系中,有点A (1,6)、点B (6,1) 、点C(1,1)三点.(1)若点A在

将A(1,6)代入函数y=m/x,即得m=6,直线AB的解析式:y=-x+7.三角形OAB的面积=三角形CAB的面积+三角形OCB的面积+三角形OAC的面积=5*5/2+5*1/2+5*1/2=35/

如图,下列说法中不正确的是A点A在直线BC上,点B在射线

应该是A吧,BC那里是直线,也是射线啊,不过B也有错,但A貌似错的多一点

如图,在平面直角坐标系内,已知点A(0,6)点B(8,0),动点P从点A开始

⊿APQ:底=AP=t(长度单位),高=Q横坐标=8-2t×4/5=8-8t/5(长度单位)(8-8t/5)t/2=24/5.化简:t²-5t+6=0.t1=2.t2=3.当t=2秒,或者3

如图,A.B.C三点在数轴上,点C在点A与点B之间,且AC:BC=1:5.

、设C为x,AC=x-(-10)=x+10BC=14-xAC:BC=(x+10):(14-x)=1:5解得:x=-62、设甲地速度为X单位/秒乙的速度为3+X单位/秒根据题意:经过t秒乙运动到距离远点

(2010•扬州二模)(1)如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形,请你只用无刻度

(1)如图所示;(2分)(2)①等腰梯形;(4分)②D关于x轴的对称点D′,连接CD′,则D′(-1,-3),设过点CD′的直线解析式为:y=kx+b(k≠0),把C、D′两点坐标代入得,−3=−k+

(2010•扬州二模)如图,在长方体ABCD-A1B1C1D1中,AA1=AD=a,AB=2a,E、F分别为C1D1、A

(Ⅰ)证明:∵BC⊥侧面CDD1C1,DE⊂侧面CDD1C1,∴DE⊥BC,(3分)在△CDE中,CD=2a,CE=DE=2a,则有CD2=CE2+DE2,∴∠DEC=90°,∴DE⊥EC,(6分)又

已知,如图,在直角坐标系中,点A在Y轴的正半轴上,点B在X轴的负半轴上,点C在X轴的正半轴上

估计您说的cosAOB=3/5应该是cosACB=3/5,因为∠AOB应该等于90°.第一步:求各点坐标.由于cos∠ACB=3/5,则OC/AC=3/5,则OC等于3,根据勾股定理,AO=4,AB&

如图,在等边三角形abc中,点p,q分别在ac,bc上,且a

解题思路:本题主要根据全等三角形的性质、等边三角形的判定进行解答解题过程:

如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,__A______O_____________B

再问:第三小题?再答:已经回答了。再问:诶哟感谢。。。

(2013 扬州)如图,△ABC 内接于⊙O,弦AD⊥AB 交BC于点E,过点B作⊙O的切线交的延长线于点F 且∠ABF

(1)证明:∵BF是⊙O的切线,∴∠3=∠C,∵∠ABF=∠ABC,即∠3=∠2,∴∠2=∠C,∴AB=AC;