一半径为r的带电球体 其电荷密度分布为ρ{qr πR^4}
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 21:18:19
由于正电荷均匀分布在球体上,所以电场强度有球对称性.设r为球心到某一场点的直线距离.根据高斯定理,ΦE=1/ε0∮q(∮q为高斯面内包含的所有电荷电量)对于球体,ΦE=E∮ds=4πr^2E所以1/ε
内部场强为0外部场强等效为球中心处有等量的带电球体即点荷产生的场强公式E=Kq2/r来求
把半球面看作许多圆环,积分即可没有必要在这问这些问题,把教材静电场例题及课后题做会就行了前提是会点微积分知识
1题取高斯面为半径为r的与球体同心的球面,由对称性,此面上个点场强大小相等方向沿径向,由高斯定理∮sEds=(1/ε0)∫ρdVr≤R时得E1*4πr^2=(1/ε0)ρ(4/3)πr^3E1=ρr/
以球心为原点建立球坐标系.设场点据原点的距离为r1对于球外的场点,即r>R时,可直接使用高斯定理求解.ES=P/ε,其中S=4πr^2整理得:E=P/4πεr^22对于球内的点,即
点电荷q在距离它r处的电势u=kq/r,k=1/(4πε),ε是真空介电常数.半圆环上任一线元dl上的电荷λdl都相当于一个点电荷,它在圆心处的电势dU=k(λdl)/R.半圆上所有线元上的电电荷都产
电荷密度分布是球对称的,可见球内外各点场强分布是球对称的,用高斯定理.电势积分.
这个题很简单啊,课本上应有推理过程.运用高斯定理,求解电场强度,然后再用积分求电势即可
在球外,可以将这个球壳等效为全部电荷集中在球心的点电荷处理,电势分布为k*4paiR^2σ/r(r>R)在球内的时候因为球壳上均匀带电,可以证明在内部所受合力为零,因此无论如何移动都不做功,因此是一个
数学公式太复杂了,还不如手写的快,累死我了
一均匀带电球体,半径为R,体电荷密度为p,今在球内挖去一半径为r(r<R)的球体,求证由此形成的空腔内的电场死均匀的,并求其值.10
由高斯定理可证,空腔内电场为零.再问:大物课你肯定没认真听讲..这问题我弄懂了没事了再答:你说说看再问:恩也有我没表达清楚的错误我是指的在大球里面随便挖一个小球,所以这个物理模型不具有很强的对称性,于
带电量Q=(4/3)PiR^3*p;U=U1+U2=0+U2=kQ/R=(4/3)PiR^2*p具体:把r换成R/2就可以了.详细参考这个:
楼主你太搞笑了,1.你积分积错了,2.你把几个量的字母搞混了改正方法:1&2.LZ的第一个式子,将积分上界换为r0LZ的第二个式子,将被积式换为dq/4πr0^2,将积分上界换为r0注意是r0!因为r
晕你,究竟推求哪个定性或定量关系也说不清楚,是不是想让人大头呀?
表面积4πrr,该半径处电量Q=4πrr*ρ,电场强度E=KQ/rr.(K为库伦定理里的常量,和k不同).所以E=K4πrr*kr/rr=4πKkr再问:不是吧,应该用到积分的啊再答:不用啊。。。