一内外半径分别为R1和R2均匀带电壳,电荷体密度为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 02:52:45
看你的样子似乎你有具体答案.第一题,静电平衡后,导体内部场强为0,在导体壳中作一同心球面为高斯面,用高斯定理可知高斯面内电荷代数和为0,因此导体壳内层带负电,由于导体壳本身电荷量代数和为0,因此外层带
静电感应.球壳内外分别均匀带电-Q,+Q.利用均匀带电球面内部是等电势与叠加原理从而电势:r>r2V=kQ/rr1
(1)电子在B点受到的库仑力大小为F=kQqr2=kQer22 电子在该处的加速度为a=Fm=kQemr22(2)设电
第(2)问中,外球壳外表面因接地无电荷,内表面带电荷为-q再看第三问内球壳接地,电势为0!但要求带多少电荷,设为Q此时整个系统所带电荷在内球壳的合电势:U=kQ/R1+k(-q)/R2!这个式子的表达
选两柱之间的半径为r处的无限圆筒为高斯面由对称性知电场仅有径向分量E_r取长为L的一段高斯面高斯面面积为2*pi*r*L内部电荷为Q=a*LE*2*pi*r*L=a*L得E=a/(2*pi*r)
F=Gm1m2/(L+r1+r2)^2
本题中的电荷分布具有球对称性,因而计算电场时可以用电场的高斯定理,电场对半径分别为3cm,6cm,8cm处的闭合球面积分得到E1*(4πr1^2)=0;E2*(4πr2^2)=q1/ε;E3*(4πr
电荷线密度为入的无限长均匀带电直线外的场强为E=2k入/rr1和r2的两点之间的电势差设为UdU=Edr=2k入dr/r=2k入lnrU=2k入[(lnr1)-(lnr2)]=2k入ln(r1/r2)
导体内表面带电-q,外表面带电q.1、导体球壳电势为q/4πε0R22、离球心1cm处电势为q/4πε0r-q/4πε0R1+q/4πε0R2r=1cm3,导体内表面带电-q,外表面带电q,导体球壳电
V1=kQ1/R1+kQ2/R2V2=kQ1/R2+kQ2/R2解上述方程组可得:Q1和Q2再问:首先你是是错的,答案我有就是我不知道怎么来的再答:答案拿出来看看很多所谓答案都错了,但愿这次是我的错了
轨道半径的立方和周期的平方成正比对于椭圆轨道卫星的轨道高度和速度是不停变化的只有半径a和周期T是一定的
高斯定理:∫Eds=Σqi 典型应用:利用E的分布对称性,合理选取高斯面,使高斯面上各点E的大小相等,面积分∫Eds就简化为ES,S为高斯面的面积.任意一
给你一个答案的网址:http://jpkc.cqu.edu.cn/ChongQ_2004_dxwl/lixiang2/other/xtjda/06/dxwl-xtda-060304.htm其中的习题1
对于单个圆柱面,内部场强为零,外部场强为E=λ/(2*PI*episilon*r),场强与距离成反比对于本题,最内侧场强为零,中间场强为E=λ1/(2*PI*episilon*r),外部场强为E=(λ
这个题目根据高斯定理做.高斯定理:通过一个任意闭合曲面S的电通量Φ等于该面所包围的所有电荷电量的代数和∑q除以介电常数ε0.与闭合面外的电荷无关.公式表达为Φ=∮EcosθdS=(1/ε0)∑q其中E
球壳是等势体,不分内外,平衡后内表面为-q,外表面为2q,内表面的电势和中心电荷的电势抵消,总电势为2q/(4*PI*episilon*R2)