一个质点作简谐振动,周期为T,当质点由平衡位置
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:23:12
用排除法做:周期是2秒,第二次经过-2cm处应该是质点到达最左端后向原点运动的过程中经过的,所以用了不到一个周期,排除D;从最左端到最右端要用1秒,所以肯定比1秒多,排除A和B,故只剩下C.所以答案是
答案:B再问:能解释吗?谢谢再答:旋转矢量是逆时针方向转动,它端点在x轴的投影点表示简谐振动,它在这个位置时它的投影点x轴正向运动
因为由题意可知:振动方程为:y=4cos(πx-2/3π)而第一次经过x=-2时的时间为:t=0所以第二次经过x=-2时必关于y函数的对称轴对称即:而函数的对称轴为:x=2/3+k(k取整数)(t+t
图片看不见~黑乎乎的一片~LZ补图
如果原来是在“最大位移”、“最小位移”(平衡位置),那么,经半个周期后,弹簧长度是相等不变的.但,如果是其它“任意时刻”,那么弹簧的长度就不等了.
/>设质点的运动方程为x=Asin(wt)=Asin(2π/Tt),当t=0时,质点处于平衡位置且向x轴正方向运动,当质点运动到二分之一最大位移处时,有Asin(2π/Tt)=A/2,解得t=T/12
如图所示是质点做简谐运动的图像,则质点振幅是___2cm____,周期是___4s_____,频率为____0.25HZ____,振动图像是____平衡位置____开始计时的.
y=Asin(wt)A/2=Asin(wX)sin(wt)=1/2wt=Pi/6(最短时间)t=Pi/6ww=2Pi/Tt=T/12再问:初相就不考虑了吗再答:初相??质点就是从平衡位置开始振动的呀!
平衡位置到最大位移要T/4时间即sin[2(T/4)]=1令到达最大位移一半要x时间即sin[2(x)]=1/2可解得x=T/12
从平衡位置运动到最大位移处,最短时间为T/4从平衡位置运动到最大位移一半处所用时间为运动到最大位移处的1/3sin30=1/2所以:最短时间为1/3*T/4=T/12再问:为什么是sin不是cos再答
用时间-位移的正弦图像解就行了arcsin(1/2)=π/6(π/6)/(2π)=1/12所以需要12分之T详细说明:取质点由平衡位置向x轴正方向运动的时刻为时间原点,则简谐运动的时间-位移函数图像是
选A,一质点作简谐振动,它运动的位移与时间的关系图就是按正弦规律变化的,该正弦波形的周期为T,平衡位置即sint=0的位置,设振幅为1,则运动到1/2所用的时间t满足sint=1/2,即t=pi/6,
设振动轨迹为:y=3sin(ωt+φ)则加速度为:a=y''=-3ω²sin(ωt+φ)由3ω²=27,解得:ω=3从而:T=2π/ω=2π/3
1\再写上初相位φ=0的简谐运动的方程y=AsinWtW=2π/T=π代入数据y=0.06sinπt始计时(t=0)时,质点恰好处在负向最大位移处把y=sinπt图象向右移动π/2得y=0.06sin
(l)该质点的振动方程;y0=0.06cos(2π/2t+π)=0.06cos(πt+π)m(2)此振动以速度u=2m/s沿x轴正方向传播时,形成的一维简谐波的波动方程;y=0.06cos[π(t-x
A.再问:有理由不?再答:你想象一个弹簧上面固定一个小球,根据图,设向上为正方向,一开始小球于最高点所以加速度向下,速度向下恢复力向下,然后经过1/4周期,到达平衡位置,又经1/4T,于最低点恢复力向
柚机械能守恒Ep=Ek某点时Ep1=Ek1又Ep1+Ek1=Ep得2Ep1=Ep故高度为最高的一半由简谐运动的时间与位移图知位移为一半时时间是二分之根号二倍T即√2/2T再问:答案是T/8好象再答:额
1.初相在A/2处,也就是说t=0时,矢量A与x正方向夹角是60度(三分之一派).2.矢量A在X轴上的投影随时间递增,在某一时刻(小于1秒),达到波峰值,即矢量A与X轴正方向重合.那么可以判断出矢量A
(πt/3-π/2)就是t时刻的相位,-π/2是初相位也就是t=0时刻的相位.直接把t=2s代入(πt/3-π/2),结果就是2s时刻的相位.2π/3-π/2=π/6